德國聯邦網路局發布電信網路安全要求要點

  德國聯邦網路局(BNetzA)於2019年3月7日公布電信網路營運安全發展需求目錄關鍵要點。該要點係德國聯邦網路局電信通訊法第109條第6項規定,與聯邦資訊安全局(BSI)和德國聯邦資料保護與資訊自由委員會(BfDI)達成協議後制定,並由德國聯邦網路局發布之。此尤其適用於在德國發展5G網路,因該技術係為未來核心關鍵基礎設施,為確保技術發展之安全性,電信網路公司必須滿足相關安全要求。鑑於5G對未來競爭力極具重要性,故用於構建5G之技術必須符合最高安全標準,且應盡可能排除安全問題,該標準同樣適用於所使用的硬體和軟體。附加的安全目錄要點基本內容如下:

(1)系統僅允許從嚴格遵守國家安全法規及電信保密和隱私法規,且值得信賴之供應商處獲得。

(2)必須定期且持續監控網路流量異常情況,如有疑問,應採取適當的保護措施。

(3)僅可使用經聯邦資訊安全局對其IT安全性檢查核可且取得認證之安全相關的網路和系統組件(以下簡稱關鍵核心組件)。關鍵核心組件僅能從獲得信賴保證之供應商/製造商中取得。

(4)安全相關的關鍵核心組)應在交付期間進行適當之驗收測試後方能使用,且須定期和持續進行安全檢查。關鍵核心組件之定義將由德國聯邦網路局和聯邦資訊安全局共同協議訂定。

(5)在安全相關領域,只能聘用經過培訓之專業人員。

(6)電信網路營運商須證明所使用的產品中,實際使用經測試合格之安全相關組件硬體和供應鏈末端的原始碼。

(7)在規劃和建立網路時,應使用來自不同製造商的網路和系統組件,以避免類似「單一耕作」(Monokulturen),即避免技術生態圈無法均衡發展,以及易受市場波動影響之不良效應。

(8)外包與安全相關勞務時,僅可考慮有能力,可靠且值得信賴的承包商。

(9)對於關鍵且與安全相關的關鍵核心組件,必須提供足夠的冗餘(Redundanzen)。

  鑑於德國於3月中旬已拍賣5G頻譜,聯邦政府將大力推廣附加要求,並讓相關企業可以清楚了解進一步計畫。為確保立法層面之具體要求,聯邦政府計畫將對電信法第109條作重大修訂。明確規定操作人員必須證明符合安全規範,並由法律規範相關認證義務。針對關鍵基礎設施中使用的關鍵核心組件應來自可信賴之供應商/製造商,應適用於整體供應鏈。此外,德國聯邦政府擬針對聯邦資訊安全局法進行修訂,包括關鍵基礎設施、其組件可信賴性之相關規範。依聯邦資訊安全局法第9條規定,將在認證框架內提供可信賴性證明。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 德國聯邦網路局發布電信網路安全要求要點, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8273&no=57&tp=5 (最後瀏覽日:2026/02/11)
引註此篇文章
你可能還會想看
美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

英國上訴法院法官對軟體專利之必要性表示懷疑

  英國上訴法院智慧財產法專業法官Robin Jacob於2006年1月13日對是否應該核發軟體專利感到懷疑,並對美國專利法所奉行的原則-「任何在陽光下由人類所創造之物,皆可以被賦予專利」-表示不能茍同。該法官認為,從美國軟體專利實務在搜尋既存技術(Prior Art)時之遭遇來看,將專利核發予事實上僅具一般性效能之軟體,為軟體專利不可避免的現象,如此一來,在搜尋既存技術的過程中將產生極大問題。   軟體專利存在的必要性一直受到以「自由資訊基礎建設基金會」(the Foundation for a Free Information Infrastructure,簡稱FFII)為首之社會運動團體之懷疑,但截至目前為止仍極少有針對此一爭議的研究。歐洲委員會為此補助一個「以法律、技術與經濟層面切入探討軟體專利對創新之影響」的研究計畫,惟該計畫需待2007 年方能有所成果。無獨有偶,歐洲議會於2005年7月駁回「軟體專利指令」(全名:the directive on the patentability of computer-implemented inventions,俗稱software patent directive),理由是,該指令之通過將造成歐洲軟體專利與美國一樣過度氾濫的窘境。

由AOL LLC and PLATFORM-A, INC. v. ADVERTISE.COM, INC. 案看網域名稱與商標名稱爭議

  2009年10月19日,美國線上公司AOL LLC and Platform-A, Inc. (American Online, 簡稱AOL)再次於美國聯邦加州中區地方法院 (US California Central Federal District Court)向一家提供美國線上行銷廣告的公司- ADVERTISE.COM公司,提出商標侵權訴訟。     本案原告- AOL早於2009年8月17日即向美國東維吉尼亞地方法院提出商標侵權訴訟,主張ADVERTISE.COM公司所使用advertise.com之網域名稱,除侵害AOL已註冊的Advertising.com,包含通用文字- advertising.com及設計過A之圖形,及申請中的AD.COM商標權外,也違反了不公平競爭法及維吉尼亞商事法。唯,10月初,東維吉尼亞地方法院法官提出有利於ADVERTISE.COM公司之意見,認為AOL企圖以其所註冊之商標- (A)dvertising.com,來阻止其他競爭公司在網路世界使用任何有關advertise文字的作法,係壟斷網路上所有線上廣告行銷市場;故,AOL被迫於10月將本件訴訟案轉向美國聯邦加州中區地方法院提出。     目前尚無對本案的意見,將待本案之後續發展,才能暸解商標權人所註冊的圖形商標中,若包含經設計的圖案及通用的文字時,是否就取得圖形當中通用文字的專用權,並可向其他競爭者主張,任何使用所註冊的商標的一部分,包含網域名稱中的文字,也是商標侵害的一種型態;如此,可能將導致擴張商標權的保障範圍。

歐盟在考量營業秘密對企業重要性下,通過兼顧重要資料保護的資料法法案,以推動資料經濟發展

歐盟理事會於2023年11月27日批准通過資料法法案(Data Act),該法案雖預計於2025年才會生效,該草案自2022年公告以來,各界對該法案都紛紛從不同角度表示意見,如企業對於資料共享是否對營業秘密外流的風險表達擔憂,歐盟在發揮資料經濟價值(資料交易與資料使用)的方向下,將業界考量納入進行修改,以下就經理事會通過之資料法法案關鍵影響概要如下: 1、資料共享 有鑑於因網路裝置/服務所產出的數位資料往往掌握於產品製造商或服務提供商身上,資料法建立了資料共享的基本規則,確保數位資料由製造商/服務商流動至第三人(包含產品/服務使用者),另資料法所保護之資料包含使用AI所產生之資料。 2、營業秘密保護 為避免資料持有人的營業秘密因此外流,資料持有人可以與請求提供資料的第三人(資料請求者)協議應採取之保密措施,在保密措施未達成一致或使用者未實施保密措施,資料持有人可暫停資料共享,在有重大經濟損失之虞時甚可拒絕資料共享。 3、對資料持有者的限制 資料持有者僅能在與使用者約定之範圍內使用資料,在無使用者許可下,不得用使用者所產出之資料去回推使用者的經濟、資產或生產等資訊,以避免損及使用者的商業地位。 資料法法案的主要目標在於塑造具競爭性的資料市場生態,確保資料的價值可公平分配到不同參與者身上,其聚焦在非個人資料的數位資料上,除適用於對歐盟提供產品/服務之廠商外,亦包含可於歐盟境內取得資料之情況。國內廠商宜先檢視自身商業行為與歐盟之關聯性,盤點現有產品或服務所產出的資料屬性,如可能需特別約定保密措施之營業秘密,預先規劃資料管理機制與對應管制措施,就重要資料或營業秘密管理機制可參資策會科法所公布之《重要數位資料治理暨管理制度規範(EDGS)》、《營業秘密保護管理規範》。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP