歐盟COVID-19疫情位置資料和接觸追蹤工具使用指引

  歐洲資料保護委員會(European Data Protection Board, EDPD)於2020年4月24日公布COVID-19疫情期間使用位置資料和接觸追蹤工具指引文件(Guidelines 04/2020 on the use of location data and contact tracing tools in the context of the COVID-19 outbreak),就針對COVID-19疫情期間,歐盟成員國利用定位技術和接觸追蹤工具所引發的隱私問題提供相關指導。

  EDPD強調,資料保護法規框架於設計時即具備一定彈性,因此,在控制疫情和限制基本人權與自由方面可取得衡平。在面對COVID-19疫情而需要處理個人資料時,應提升社會接受度,並確保有效實施個資保護措施。然而資料和技術雖可成為此次防疫重要的工具,但此次的資料利用鬆綁應僅限用於公共衛生措施。歐盟應指導成員國或相關機構,採取COVID-19相關應變措施時,若涉及處理個人資料,應遵守有效性、必要性、符合比例等原則。本次指引針對利用位置資料和接觸追蹤工具的特定兩種情況,闡明其利用條件和原則。情況一是使用位置資料建立病毒傳播模型,並進一步評估及研擬整體有效的限制措施;情況二是針對有接觸史病患進行追踪,目的是為通知確診病人或疑似個案以進行隔離,以便儘早切斷傳播鏈。

  EDPB指出,GDPR和電子隱私保護指令(ePrivacy Directive)均有特別規定,允許各成員國及歐盟層級公共單位使用匿名及個人資料監控新冠病毒的傳播,並呼籲透過個人自願性安裝接觸追蹤工具。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 歐盟COVID-19疫情位置資料和接觸追蹤工具使用指引, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8458&no=57&tp=5 (最後瀏覽日:2026/01/11)
引註此篇文章
你可能還會想看
合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

日本內閣官房提出未來投資戰略報告加速機器人實用及活化

  日本內閣官房日本經濟再生總合事務局(内閣官房日本経済再生総合事務局)在2017年6月9日第10次「未來投資會議」中提出未來投資戰略2017報告(未来投資戦略2017~Society 5.0 の実現に向けた改革~),在成長的戰略成果(5)日本第四次產業革命及新經濟的展開中,分別對於機器人實用、物聯網(IOT)、大數據(BIG DATA)、人工智慧(AI)等提出成果及未來計畫。   機器人加速實用化:首先,機器人廣泛利用在商業設施、機場等日常生活空間,於2016年9月羽田機場設置機器人實驗室「Haneda Robotics Lab」,利用機器人改善服務並補充勞動力。有關打掃清潔、協助移動、查詢服務等17種機器人,將進行實證實驗。而路面協助行走型機器人「RT.1」已經完成,於2015年生活協助型機器人之安全性得到國際認證,其後發展之「RT.2」將使用於長期照顧層面。其次,開發農業使用之自動駕駛拖車,並提供工作實際狀況和土壤狀況之電子管理服務。今年6月開始商業化之自動駕駛顯示器,可以監控自動駕駛耕作機器進行自動耕作等。在物流管理方面,於2018年將於山間部等地區進行無人機的包裹遞送,2020年將在都會區全面無人包裹遞送。預計將與日立等相關公司,進行物流管理系統之開發及活用福島機器人測試場域。

國際海事組織海事安全委員會決議於2025年前制定非強制性自駕船國際章程

  國際海事組織(International Maritime Organization,下稱IMO)於2022年4月20日至29日於線上召開為期9天的海事安全委員會(Maritime Safety Committee,下稱MSC)第105屆例會,會議重點係咸稱之自駕船——亦即海上自動化水面船舶(Maritime Autonomous Surface Ship,下稱MASS)之航行與操作規則。本屆會議總結並延續了MSC近年針對MASS的工作,包括2018年提出MASS實驗框架規範,以及2021年提出MASS法制框架評估等。本屆會議除了賡續規劃MASS的法制路線圖(Roadmap)外,鑒於船舶相關智慧科技快速發展,MSC決議於2025年之前,針對各級MASS制定非強制性(voluntary)之章程及規定後,蒐集各國的實務經驗與意見,再於2027年將其轉為強制性(mandatory)的規定,以於2028年生效並適用於IMO全體會員國。   部分會員國(例如日本)從造船技術出發,建議未來的MASS指南與規範內容應全面覆蓋船舶的設計、建造、系統、設備的功能要求。挪威則建議應按第103屆會議所盤點之法規,優先處理「人員」相關議題,包括船員、船長及遠端操作員的資格,以及當值與行為準則等。韓國則建議,即便是等級最高的全自駕船,亦不可能全面取代人為操作,因此MASS的法制應以「人機協同」為基礎,方能合乎SOLAS公約與IMO促進海上航行安全的目的及宗旨。最後,各國亦擬議將MASS規範優先適用於「貨船」,而非「客船」。本屆會議顯示IMO已加快MASS法制工作的進程並規劃具體之立法期程,我國除了在《無人載具科技創新實驗條例》建立的監理沙盒下已有兩件自駕船實驗案,未來勢必需要對接國際海事規範,航政機關實須提前因應及規劃。

IEA 發表「德國能源政策 2013 年檢閱報告」

TOP