Research on Policies for building a digital nation in Recent Years (2016-2017)

Research on Policies for building a digital nation in Recent Years (2016-2017)

  Recent years, the government has already made some proactive actions, including some policies and initiatives, to enable development in the digital economy and fulfill the vision of Digital Nation. Those actions are as follows:

1. CREATING THE “FOOD CLOUD” FOR FOOD SAFETY CONTROLS

  Government agencies have joined forces to create an integrated “food cloud” application that quickly alerts authorities to food safety risks and allows for faster tracing of products and ingredients. The effort to create the cloud was spearheaded by the Executive Yuan’s Office of Food Safety under the leadership of Vice Premier Chang San-cheng on January 12, 2016.

  The “food cloud” application links five core systems (registration, tracing, reporting, testing, and inspection) from the Ministry of Health and Welfare (MOHW) with eight systems from the Ministry of Finance, Ministry of Economic Affairs, Ministry of Education (MOE), Council of Agriculture and Environmental Protection Administration.

  The application gathers shares and analyzes information in a methodical and systematic manner by employing big data technology. To ensure the data can flow properly across different agencies, the Office of Food Safety came up with several products not intended for human consumption and had the MOHW simulate the flow of those products under import, sale and supply chain distribution scenarios. The interministerial interface successfully analyzed the data and generated lists of food risks to help investigators focus on suspicious companies.

  Based on these simulation results, the MOHW on September 2, 2015, established a food and drug intelligence center as a mechanism for managing food safety risks and crises on the national level. The technologies for big data management and mega data analysis will enable authorities to better manage food sources and protect consumer health.

  In addition, food cloud systems established by individual government agencies are producing early results. The MOE, for instance, rolled out a school food ingredient registration platform in 2014, and by 2015 had implemented the system across 22 countries and cities at 6,000 schools supplying lunches for 4.5 million students. This platform, which made school lunch ingredients completely transparent, received the 2015 eAsia Award as international recognition for the use of information technology in ensuring food safety.

2. REVISING DIGITAL CONVERGENCE ACTS

  On 2016 May 5th, the Executive Yuan Council approved the National Communications Commission's (NCC) proposals, drafts of “Broadcasting Terrestrial and Channel Service Suppliers Administration Act”, “Multichannel Cable Platform Service Administration Act”, “Telecommunications Service Suppliers Act”, “Telecommunications Infrastructure and Resources Administration Act”, “Electronic Communications Act”, also the five digital convergence laws. They will be sent to the Legislature for deliberation. But in the end, this version of five digital convergence bills did not pass by the Legislature.

  However, later on, November 16, 2017, The Executive Yuan approved the new drafts of “Digital Communication Act” and the “Telecommunication Service Management Act”.
  The “Digital Communication Act” and the “Telecommunication Service Management Act” focused summaries as follows:

  1. The digital communication bill

  A. Public consultation and participation.

  B. The digital communication service provider ought to use internet resource reasonability and reveal network traffic control measures.

  C. The digital communication service provider ought to reveal business information and Terms of Service.

  D. The responsibility of the digital communication service provider.

  2. The telecommunication service management bill

  A. The telecommunication service management bill change to use registration system.

  B. The general obligation of telecommunications to provide telecommunication service and the special obligation of Specific telecommunications.

  C. Investment, giving, receiving and merging rules of the telecommunication service.

  Telecommunications are optimism of relaxing rules and regulations, and wish it would infuse new life and energy into the market. Premier Lai instructed the National Communications Commission and other agencies to elucidate the contents of the two communication bills to all sectors of society, and communicate closely with lawmakers of all parties to build support for a quick passage of the bills.

3. FOCUSING ON ICT SECURITY TO BUILD DIGITAL COUNTRIES

  The development of ICT has brought convenience to life but often accompanied by the threat of illegal use, especially the crimes with the use of new technologies such as Internet techniques and has gradually become social security worries. Minor impacts may cause inconvenience to life while major impacts may lead to a breakdown of government functions and effects on national security. To enhance the capability of national security protection and to avoid the gap of national security, the Executive Yuan on August 1st 2016 has upgraded the Office of Information and Communication Security into the Agency of Information and Communication Security, a strategic center of R.O.C security work, integrating the mechanism of the whole government governance of information security, through specific responsibility, professionalism, designated persons and permanent organization to establish the security system, together with the relevant provisions of the law so that the country's information and communication security protection mechanism will become more complete. The efforts to the direction could be divided into three parts:

  First, strengthening the cooperation of government and private sectors of information security: In a sound basis of legal system, the government plans to strengthen the government and some private sectors’ information security protection abilities ,continue to study and modify the relevant amendments to the relevant provisions, strengthen public-private collaborative mechanism, deepen the training of human resources and enhance the protection of key information infrastructure of our country.

  Second, improving the information and communication security professional capability: information and communication security business is divided into policy and technical aspects. While the government takes the responsibility for policy planning and coordination, the technical service lies in an outsourcing way. Based on a sound legal system, the government will establish institutionalized and long-term operation modes and plan appropriate organizational structures through the discussion of experts and scholars from all walks of life.

  Third, formulating Information and Communication Safety Management Act and planning of the Fifth National Development Program for Information and Communication Security: The government is now actively promoting the Information and Communication Safety Management Act as the cornerstone for the development of the national digital security and information security industry. The main content of the Act provides that the applicable authorities should set up security protection plan at the core of risk management and the procedures of notification and contingency measures, and accept the relevant administrative check. Besides the vision of the Fifth National Development Program for Information and Communication Security which the government is planning now is to build a safe and reliable digital economy and establish a safe information and communication environment by completing the legal system of information and communication security environment, constructing joint defense system of the national Information and Communication security, pushing up the self-energy of the industries of information security and nurture high-quality human resources for elite talents for information security.

4. THE DIGITAL NATION AND INNOVATIVE ECONOMIC DEVELOPMENT PLAN

  The Digital Nation and Innovative Economic Development Plan (2017-2025) known as “DIGI+” plan, approved by the Executive Yuan on November 24, 2016. The plan wants to grow nation’s digital economy to NT $ 6.5 trillion (US$205.9 billion), improve the digital lifestyle services penetration rate to 80 %, increase broadband connections to 2 Gbps, ensure citizens’ basic rights to have 25 Mbps broadband access, and put our nation among the top 10 information technology nations worldwide by 2025.

  The plan contains several important development strategies: DIGI+ Infrastructure: Build infrastructure conducive to digital innovation. DIGI+ Talent: Cultivate digital innovation talent. DIGI+ Industry: Support cross-industry transformation through digital innovation. DIGI+ Rights: Make R.O.C. an advanced society that respects digital rights and supports open online communities. DIGI+ Cities: Build smart cities through cooperation among central and local governments and the industrial, academic and research sectors. DIGI+ Globalization: Boost nation’s standing in the global digital service economy.

  The plan also highlights few efforts:

  First is to enrich “soft” factors and workforce to create an innovative environment for digital development. To construct this environment, the government will construct an innovation-friendly legal framework, cultivate interdisciplinary digital talent, strengthen research and develop advanced digital technologies.

  Second is to enhance digital economy development. The government will incentivize innovative applications and optimize the environment for digital commerce.

  Third, the government will develop an open application programming interface for government data and create demand-oriented, one-stop smart government cloud services.

  Fourth, the government will ensure broadband access for the disadvantaged and citizens of the rural area, implement the participatory process, enhance different kinds of international cooperation, and construct a comprehensive humanitarian legal framework with digital development.

  Five is to build a sustainable smart country. The government will use smart network technology to build a better living environment, promote smart urban and rural area connective governance and construction and use on-site research and industries innovation ecosystem to assist local government plan and promote construction of the smart country.

  In order to achieve the overall effectiveness of the DIGI + program, interdisciplinary, inter-ministerial, inter-departmental and inter-departmental efforts will be required to collaborate with the newly launched Digital National Innovation Economy (DIGI +) Promotion Team.

5. ARTIFICIAL INTELLIGENCE SCIENTIFIC RESEARCH STRATEGY

  The Ministry of Science and Technology (MOST) reported strategy plan for artificial intelligence (AI) scientific research at Cabinet meeting on August 24, 2017. Artificial intelligence is a powerful and inevitable trend, and it will be critical to R.O.C.’s competitiveness for the next 30 years.

  The ministry will devote NT$16 billion over the next five years to building an AI innovation ecosystem in R.O.C. According to MOST, the plan will promote five strategies:

  1. Creating an AI platform to provide R&D services

  MOST will devote NT$5 billion over the next four years to build a platform, integrating the resources, providing a shared high-speed computing environment and nurturing emerging AI industries and applications.

  2. Establishing an AI innovative research center

  MOST will four artificial intelligence innovation research centers across R.O.C. as part of government efforts to enhance the nation’s competitiveness in AI technology. The centers will support the development of new AI in the realms of financial technology, smart manufacturing, smart healthcare and intelligent transportation systems.

  3. Setting up AI robot maker spaces

  An NT$2 billion, four-year project assisting industry to develop the hardware-software integration of robots and innovative applications was announced by the Ministry of Science and Technology.

  4. Subsidizing a semiconductor “moonshot” program to explore ambitious and groundbreaking smart technologies

  This program will invest NT$4 billion from 2018 through 2021 into developing semiconductors and chip systems for edge devices as well as integrating the academic sector’s R&D capabilities and resources. the project encompasses cognitive computing and AI processor chips; next-generation memory designs; process technologies and materials for key components of sensing devices; unmanned vehicles, AR and VR; IoT systems and security.

  5. Organizing Formosa Grand Challenge competitions 

  The program is held in competitions to engage young people in the development of AI applications.

  The government hopes to extend R.O.C.’s industrial advantages and bolster the country’s international competitiveness, giving R.O.C. the confidence to usher in the era of AI applications. All of these efforts will weave people, technologies, facilities, and businesses into a broader AI innovation ecosystem.

6. INTELLIGENT TRANSPORTATION SYSTEM PLANS

  Ministry of Transportation and Communications (MOTC) launched plans to develop intelligent transportation systems at March 7th in 2017. MOTC integrates transportation and information and communications technology through these plans to improve the convenience and reduce the congestion of the transportation. These plans combine traffic management systems for highways, freeways and urban roads, a multi-lane free-flow electronic toll collection system, bus information system that provides timely integrated traffic information services, and public transportation fare card readers to reduce transport accidence losses, inconvenience of rural area, congestion of main traffic arteries and improve accessibility of public transportation.

  There are six plans are included: 1. Intelligent transportation safety plan; 2. Relieve congestion on major traffic arteries; 3. Make transportation more convenient in Eastern Taiwan and remote areas; 4. Integrate and share transportation resources; 5. Develop “internet-of-vehicles” technology applications; and 6. Fundamental R&D for smart transportation technology.

  These plans promote research and development of smart vehicles and safety intersections, develop timely bus and traffic information tracking system, build a safe system of shared, safe and green-energy smart system, and subsidize the large vehicles to install the vision enhancement cameras to improve the safety of transportation. These plans also use eTag readers, vehicle sensors and info communication technologies to gather the traffic information and provide timely traffic guidance, reduce the congestion of the traffic flow. These plans try to use demand-responsive transit system with some measures such as combine public transportation and taxi, to improve the flexibility of the public traffic service and help the basic transportation needs of residents in eastern Taiwan and rural areas to be fulfilled. A mobile transport service interface and a platform that integrating booking and payment processes are also expected to be established to provide door-to-door transportation services and to integrate transportation resources. And develop demonstration projects of speed coordination of passenger coach fleets, vehicle-road interaction technology, and self-driving car to investigate and verify the issues in technological, operational, industrial, legal environments of internet-of-vehicles applications in our country. Last but not least, research and development on signal control systems that can be used in both two and four-wheeled vehicles, and deploy an internet-of-vehicles prototype platform and develop drones traffic applications.

  These plans are expected to reduce 25% traffic congestion, 20% of motor vehicle incidence, leverage 10% using rate of public transportation, raise 20% public transportation service accessibility of rural area and create NT$30 billion production value. After accomplishing these targets, the government can establish a comprehensive transportation system and guide industry development of relating technology areas.

  Through the aforementioned initiatives, programs, and plans, the government wants to construct the robust legal framework and policy environment for digital innovation development, and facilitate the quality of citizens in our society.

※Research on Policies for building a digital nation in Recent Years (2016-2017),STLI, https://stli.iii.org.tw/en/article-detail.aspx?no=105&tp=2&i=168&d=7938 (Date:2024/04/21)
Quote this paper
You may be interested
The opening and sharing of scientific data- The Data Policy of the U.S. National Institutes of Health

The opening and sharing of scientific data- The Data Policy of the U.S. National Institutes of Health Li-Ting Tsai   Scientific research improves the well-being of all mankind, the data sharing on medical and health promote the overall amount of energy in research field. For promoting the access of scientific data and research findings which was supported by the government, the U.S. government affirmed in principle that the development of science was related to the retention and accesses of data. The disclosure of information should comply with legal restrictions, and the limitation by time as well. For government-sponsored research, the data produced was based on the principle of free access, and government policies should also consider the actual situation of international cooperation[1]Furthermore, the access of scientific research data would help to promote scientific development, therefore while formulating a sharing policy, the government should also consider the situation of international cooperation, and discuss the strategy of data disclosure based on the principle of free access.   In order to increase the effectiveness of scientific data, the U.S. National Institutes of Health (NIH) set up the Office of Science Policy (OSP) to formulate a policy which included a wide range of issues, such as biosafety (biosecurity), genetic testing, genomic data sharing, human subjects protections, the organization and management of the NIH, and the outputs and value of NIH-funded research. Through extensive analysis and reports, proposed emerging policy recommendations.[2] At the level of scientific data sharing, NIH focused on "genes and health" and "scientific data management". The progress of biomedical research depended on the access of scientific data; sharing scientific data was helpful to verify research results. Researchers integrated data to strengthen analysis, promoted the reuse of difficult-generated data, and accelerated research progress.[3] NIH promoted the use of scientific data through data management to verify and share research results.   For assisting data sharing, NIH had issued a data management and sharing policy (DMS Policy), which aimed to promote the sharing of scientific data funded or conducted by NIH.[4] DMS Policy defines “scientific data.” as “The recorded factual material commonly accepted in the scientific community as of sufficient quality to validate and replicate research findings, regardless of whether the data are used to support scholarly publications. Scientific data do not include laboratory notebooks, preliminary analyses, completed case report forms, drafts of scientific papers, plans for future research, peer reviews, communications with colleagues, or physical objects, such as laboratory specimens.”[5] In other words, for determining scientific data, it is not only based on whether the data can support academic publications, but also based on whether the scientific data is a record of facts and whether the research results can be repeatedly verified.   In addition, NIH, NIH research institutes, centers, and offices have had expected sharing of data, such as: scientific data sharing, related standards, database selection, time limitation, applicable and presented in the plan; if not applicable, the researcher should propose the data sharing and management methods in the plan. NIH also recommended that the management and sharing of data should implement the FAIR (Findable, Accessible, Interoperable and Reusable) principles. The types of data to be shared should first in general descriptions and estimates, the second was to list meta-data and other documents that would help to explain scientific data. NIH encouraged the sharing of scientific data as soon as possible, no later than the publication or implementation period.[6] It was said that even each research project was not suitable for the existing sharing strategy, when planning a proposal, the research team should still develop a suitable method for sharing and management, and follow the FAIR principles.   The scientific research data which was provided by the research team would be stored in a database which was designated by the policy or funder. NIH proposed a list of recommended databases lists[7], and described the characteristics of ideal storage databases as “have unique and persistent identifiers, a long-term and sustainable data management plan, set up metadata, organizing data and quality assurance, free and easy access, broad and measured reuse, clear use guidance, security and integrity, confidentiality, common format, provenance and data retention policy”[8]. That is to say, the design of the database should be easy to search scientific data, and should maintain the security, integrity and confidentiality and so on of the data while accessing them.   In the practical application of NIH shared data, in order to share genetic research data, NIH proposed a Genomic Data Sharing (GDS) Policy in 2014, including NIH funding guidelines and contracts; NIH’s GDS policy applied to all NIHs Funded research, the generated large-scale human or non-human genetic data would be used in subsequent research. [9] This can effectively promote genetic research forward.   The GDS policy obliged researchers to provide genomic data; researchers who access genomic data should also abide by the terms that they used the Controlled-Access Data for research.[10] After NIH approved, researchers could use the NIH Controlled-Access Data for secondary research.[11] Reviewed by NIH Data Access Committee, while researchers accessed data must follow the terms which was using Controlled-Access Data for research reason.[12] The Genomic Summary Results (GSR) was belong to NIH policy,[13] and according to the purpose of GDS policy, GSR was defined as summary statistics which was provided by researchers, and non-sensitive data was included to the database that was designated by NIH.[14] Namely. NIH used the application and approval of control access data to strike a balance between the data of limitation access and scientific development.   For responding the COVID-19 and accelerating the development of treatments and vaccines, NIH's data sharing and management policy alleviated the global scientific community’s need for opening and sharing scientific data. This policy established data sharing as a basic component in the research process.[15] In conclusion, internalizing data sharing in the research process will help to update the research process globally and face the scientific challenges of all mankind together. [1]NATIONAL SCIENCE AND TECHNOLOGY COUNCIL, COMMITTEE ON SCIENCE, SUBCOMMITEE ON INTERNATIONAL ISSUES, INTERAGENCY WORKING GROUP ON OPEN DATA SHARING POLICY, Principles For Promoting Access To Federal Government-Supported Scientific Data And Research Findings Through International Scientific Cooperation (2016), 1, organized from Principles, at 5-8, https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/iwgodsp_principles_0.pdf (last visited December 14, 2020). [2]About Us, Welcome to NIH Office of Science Policy, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/about-us/ (last visited December 7, 2020). [3]NIH Data Management and Sharing Activities Related to Public Access and Open Science, NIH National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/nih-data-management-and-sharing-activities-related-to-public-access-and-open-science/ (last visited December 10, 2020). [4]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 11, 2020). [5]Final NIH Policy for Data Management and Sharing, NIH National Institutes of Health Office of Extramural Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html (last visited December 12, 2020). [6]Supplemental Information to the NIH Policy for Data Management and Sharing: Elements of an NIH Data Management and Sharing Plan, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-014.html (last visited December 13, 2020). [7]The list of databases in details please see:Open Domain-Specific Data Sharing Repositories, NIH National Library of Medicine, https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html (last visited December 24, 2020). [8]Supplemental Information to the NIH Policy for Data Management and Sharing: Selecting a Repository for Data Resulting from NIH-Supported Research, Office of The Director, National Institutes of Health (OD), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html (last visited December 13, 2020). [9]NIH Genomic Data Sharing, National Institutes of Health Office of Science Policy, https://osp.od.nih.gov/scientific-sharing/genomic-data-sharing/ (last visited December 15, 2020). [10]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [11]NIH Genomic Data Sharing Policy, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-14-124.html (last visited December 17, 2020). [12]id. [13]NIH National Institutes of Health Turning Discovery into Health, Responsible Use of Human Genomic Data An Informational Resource, 1, at 6, https://osp.od.nih.gov/wp-content/uploads/Responsible_Use_of_Human_Genomic_Data_Informational_Resource.pdf (last visited December 17, 2020). [14]Update to NIH Management of Genomic Summary Results Access, National Institutes of Health (NIH), https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-023.html (last visited December 17, 2020). [15]Francis S. Collins, Statement on Final NIH Policy for Data Management and Sharing, National Institutes of Health Turning Discovery Into Health, https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-final-nih-policy-data-management-sharing (last visited December 14, 2020).

Recommendation of the Regulations on the Legal and Effective Access to Taiwan’s Biological Resources

Preface Considering that, many countries and regional international organizations already set up ABS system, such as Andean Community, African Union, Association of Southeast Asia Nations (ASEAN), Australia, South Africa, and India, all are enthusiastic with the establishment of the regulations regarding the access management of biological resources and genetic resources. On the other hand, there are still many countries only use traditional and existing conservation-related regulations to manage the access of biological resources. Can Taiwan's regulations comply with the purposes and objects of CBD? Is there a need for Taiwan to set up specific regulations for the management of these access activities? This article plans to present Taiwan's regulations and review the effectiveness of the existing regulations from the aspect of enabling the legal and effective access to biological resources. A recommendation will be made on whether Taiwan should reinforce the management of the bio-resources access activities. Review and Recommendation of the Regulations on the Legal and Effective Access to Taiwan's Biological Rersearch Resources (1)Evaluate the Needs and Benefits before Establishing the Regulation of Access Rights When taking a look at the current development of the regulations on the access of biological resources internationally, we discover that some countries aggressively develop designated law for access, while some countries still adopt existing regulations to explain the access rights. Whether to choose a designated law or to adopt the existing law should depend on the needs of establishing access and benefit sharing system. Can the access and benefit sharing system benefit the functioning of bio-technological research and development activities that link closely to the biological resources? Can the system protect the interests of Taiwan's bio-research results? In Taiwan, in the bio-technology industry, Agri-biotech, Medical, or Chinese Herb Research & Development are the key fields of development. However, the biological resources they use for the researches are mainly supplied from abroad. Hence, the likelihood of violating international bio-piracy is higher. On the contrary, the incidence of international research houses searching for the biological resources from Taiwan is comparatively lower, so the possibility for them to violate Taiwan's bio-piracy is very low. To look at this issue from a different angle, if Taiwan establishes a separate management system for the access of biological resources, it is likely to add more restrictions to Taiwan's bio-tech R&D activities and impact the development of bio-industry. Also, under the new management system, international R&D teams will also be confined, if they wish to explore the biological resources, or conduct R&D and seek for co-operation activities in Taiwan. Not to mention that it is not a usual practice for international R&D teams to look for Taiwan's biological resources. A new management system will further reduce their level of interest in doing so. In the end, the international teams will then shift their focus of obtaining resources from other countries where the regulation on access is relatively less strict. Before Taiwan establishes the regulations on the legal and effective access to bio-research resources, the government should consider not only the practical elements of the principal on the fair and impartial sharing of the derived interests from bio-research resources, but also take account of its positive and negative impacts on the development of related bio-technological industries. Even if a country's regulation on the access and benefit sharing is thorough and comprehensive enough to protect the interests of bio-resource provider, it will, on the contrary, reduce the industry's interest in accessing the bio-resources. As a result, the development of bio-tech industry will be impacted and the resource provider will then be unable to receive any benefits. By then, the goal of establishing the regulation to benefit both the industry and resource provider will not be realized. To sum up, it is suggested to evaluate the suitability of establishing the management system for the access to biological resources through the cost-effect analysis first. And, further consider the necessity of setting up regulations by the access the economic benefits derived from the regulation for both resource provider and bio-tech industry. (2)The Feasibility of Managing the access to Bio-research Resources from existing Regulations As analysed in the previous paragraphs, the original intention of setting up the Wildlife Conservation Act, National Park Law, Forestry Act, Cultural Heritage Preservation Act, and Aboriginal Basic Act is to protect the environment and to conserve the ecology. However, if we utilize these traditional regulations properly, it can also partially help to manage the access to biological resources. When Taiwan's citizens wish to enter specific area, or to collect the biological resources within the area, they need to receive the permit from management authority, according to current regulations. Since these national parks, protection areas, preserved areas, or other controlled areas usually have the most comprehensive collections of valuable biological resources in a wide range of varieties, it is suggested to include the agreements of access and benefit sharing as the mandatory conditions when applying for the entrance permit. Therefore, the principal of benefit sharing from the access to biological resources can be assured. Furthermore, the current regulations already favour activities of accessing biological resources for academic research purpose. This practice also ties in with the international trend of separating the access application into two categories - academic and business. Australia's practice of access management can be a very good example of utilizing the existing regulations to control the access of resources. The management authority defines the guidelines of managing the entrance of control areas, research of resources, and the collection and access of resources. The authority also adds related agreements, such as PIC (Prior Informed Consent), MTA (Material Transfer Agreement), and benefit sharing into the existing guidelines of research permission. In terms of scope of management, the existing regulation does not cover all of Taiwan's bio-research resources. Luckily, the current environmental protection law regulates areas with the most resourceful resources or with the most distinctive and rare species. These are often the areas where the access management system is required. Therefore, to add new regulation for access management on top of the existing regulation is efficient method that utilizes the least administrative resources. This could be a feasible way for Taiwan to manage the access to biological resources. (3)Establish Specific Regulations to Cover the Details of the Scope of Derived Interests and the Items and Percentage of Funding Allocation In addition to the utilization of current regulations to control the access to biological resources, many countries establish specific regulations to manage the biological resources. If, after the robust economic analysis had been done, the country has come to an conclusion that it is only by establishing new regulations of access management the resources and derived interests of biological resources can be impartially shared, the CBD (Convention of Bio Diversity), the Bonn Guidelines, or the real implementation experiences of many countries can be an important guidance when establishing regulations. Taiwan has come up with the preliminary draft of Genetic Resources Act that covers the important aspects of international access guidelines. The draft indicates the definition and the scope of access activities, the process of access applications (for both business and academic purpose), the establishment of standardized or model MTA, the obligation of disclosing the sources of property rights (patents), and the establishment of bio-diversity fund. However, if we observe the regulation or drafts to the access management of the international agreements or each specific country, we can find that the degree of strictness varies and depends on the needs and situations. Generally speaking, these regulations usually do not cover some detailed but important aspects such as the scope of derived interests from biological resources, or the items and percentage of the allocation of bio-diversity fund. Under the regulation to the access to biological resources, in addition to the access fee charge, the impartial sharing of the derived interests is also an important issue. Therefore, to define the scope of interests is extremely important. Any interest that is out of the defined scope cannot be shared. The interest stated in the existing regulation generally refers to the biological resources or the derived business interests from genetic resources. Apart from describing the forms of interest such as money, non-money, or intellectual property rights, the description of actual contents or scope of the interests is minimal in the regulations. However, after realizing the importance of bio-diversity and the huge business potential, many countries have started to investigate the national and international bio-resources and develop a database system to systematically collect related bio-research information. The database comprised of bio-resources is extremely useful to the activities related to bio-tech developments. If the international bio-tech companies can access Taiwan's bio-resource database, it will save their travelling time to Taiwan. Also, the database might as well become a product that generates revenues. The only issue that needs further clarification is whether the revenue generated from the access of database should be classified as business interests, as defined in the regulations. As far as the bio-diversity fund is concerned, many countries only describe the need of setting up bio-diversity funds in a general manner in the regulations. But the definition of which kind of interests should be put into funds, the percentage of the funds, and the related details are not described. As a result, the applicants to the access of bio-resources or the owner of bio-resources cannot predict the amount of interests to be put into bio-diversity fund before they actually use the resources. This issue will definitely affect the development of access activities. To sum up, if Taiwan's government wishes to develop the specific regulations for the access of biological resources, it is advised to take the above mentioned issues into considerations for a more thoroughly described, and more effective regulations and related framework. Conclusion In recent years, it has been a global trend to establish the regulations of the access to and benefit sharing of bio-resources. The concept of benefit sharing is especially treated as a useful weapon for the developing countries to protect the interests of their abundant bio-research resources. However, as we are in the transition period of changing from free access to biological resources to controlled access, we are facing different regulations within one country as well as internationally. It will be a little bit disappointing for the academic research institution and the industry who relies on the biological resources to conduct bio-tech development if they do not see a clear principal direction to follow. The worse case is the violation of the regulation of the country who owns the bio-resources when the research institutions try to access, exchange, or prospect the biological resources without thorough understanding of related regulations. For some of Taiwan's leading fields in the bio-tech industry, such as Chinese and herbal medicine related products, agricultural products, horticultural products, and bio-tech products, since many resources are obtained from abroad, the incidence of violation of international regulation will increase, and the costs from complying the regulations will also increase. Therefore, not only the researcher but also the government have the responsibility to understand and educate the related people in Taiwan's bio-tech fields the status of international access management regulations and the methods of legally access the international bio-research resources. Currently in Taiwan, we did not establish specific law to manage the access to and benefit sharing of bio-resources. Comparing with the international standard, there is still room of improvement for Taiwan's regulatory protection to the provider of biological resources. However, we have to consider the necessity of doing so, and how to do the improvement. And Taiwan's government should resolve this issue. When we consider whether we should follow international trend to establish a specific law for access management, we should always go back to check the potential state interests we will receive and take this point into consideration. To define the interests, we should always cover the protection of biological resources, the development of bio-tech industry, and the administrative costs of government. Also the conservation of biological resources and the encouragement of bio-tech development should be also taken into consideration when the government is making decisions. In terms of establishing regulations for the access to biological resources and the benefit sharing, there are two possible solutions. The first solution is to utilize the existing regulations and add the key elements of access management into the scope of administrative management. The work is planned through the revision of related current procedures such as entrance control of controlled areas and the access of specific resources. The second solution is to establish new regulations for the access to biological resources. The first solution is relatively easier and quicker; while the second solution is considered to have a more comprehensive control of the issue. The government has the final judgement on which solution to take to generate a more effective management of Taiwan's biological resources.

Finland’s Technology Innovation System

I. Introduction   When, Finland, this country comes to our minds, it is quite easy for us to associate with the prestigious cell-phone company “NOKIA”, and its unbeatable high technology communication industry. However, following the change of entire cell-phone industry, the rise of smart phone not only has an influence upon people’s communication and interaction, but also makes Finland, once monopolized the whole cell-phone industry, feel the threat and challenge coming from other new competitors in the smart phone industry. However, even though Finland’s cell-phone industry has encountered frustrations in recent years in global markets, the Finland government still poured many funds into the area of technology and innovation, and brought up the birth of “Angry Birds”, one of the most popular smart phone games in the world. The Finland government still keeps the tradition to encourage R&D, and wishes Finland’s industries could re-gain new energy and power on technology innovation, and indirectly reach another new competitive level.   According to the Statistics Finland, 46% Finland’s enterprises took innovative actions upon product manufacturing and the process of R&D during 2008-2010; also, the promotion of those actions not merely existed in enterprises, but directly continued to the aspect of marketing and manufacturing. No matter on product manufacturing, the process of R&D, the pattern of organization or product marketing, we can observe that enterprises or organizations make contributions upon innovative activities in different levels or procedures. In the assignment of Finland’s R&D budgets in 2012, which amounted to 200 million Euros, universities were assigned by 58 million Euros and occupied 29% R&D budgets. The Finland Tekes was assigned by 55 million Euros, and roughly occupied 27.5% R&D budgets. The Academy of Finland (AOF) was assigned by 32 million Euros, and occupied 16% R&D budges. The government’s sectors were assigned by 3 million Euros, and occupied 15.2% R&D budgets. Other technology R&D expenses were 2.1 million Euros, and roughly occupied 10.5% R&D. The affiliated teaching hospitals in universities were assigned by 0.36 million Euros, and occupied 1.8% R&D budgets. In this way, observing the information above, concerning the promotion of technology, the Finland government not only puts more focus upon R&D innovation, but also pays much attention on education quality of universities, and subsidizes various R&D activities. As to the Finland government’s assignment of budges, it can be referred to the chart below.   As a result of the fact that Finland promotes industries’ innovative activities, it not only made Finland win the first position in “Growth Competitiveness Index” published by the World Economic Forum (WEF) during 2000-2006, but also located the fourth position in 142 national economy in “The Global Competitiveness Report” published by WEF, preceded only by Swiss, Singapore and Sweden, even though facing unstable global economic situations and the European debt crisis. Hence, observing the reasons why Finland’s industries have so strong innovative power, it seems to be related to the Finland’s national technology administrative system, and is worthy to be researched. II. The Recent Situation of Finland’s Technology Administrative System A. Preface   Finland’s administrative system is semi-presidentialism, and its executive power is shared by the president and the Prime Minister; as to its legislative power, is shared by the Congress and the president. The president is the Finland’s leader, and he/she is elected by the Electoral College, and the Prime Minister is elected by the Congress members, and then appointed by the president. To sum up, comparing to the power owned by the Prime Minister and the president in the Finland’s administrative system, the Prime Minister has more power upon executive power. So, actually, Finland can be said that it is a semi-predisnetialism country, but trends to a cabinet system.   Finland technology administrative system can be divided into four parts, and the main agency in each part, based upon its authority, coordinates and cooperates with making, subsidizing, executing of Finland’s technology policies. The first part is the policy-making, and it is composed of the Congress, the Cabinet and the Research and Innovation Council; the second part is policy management and supervision, and it is leaded by the Ministry of Education and Culture, the Ministry of Employment and the Economy, and other Ministries; the third part is science program management and subsidy, and it is composed of the Academy of Finland (AOF), the National Technology Agency (Tekes), and the Finnish National Fund Research and Development (SITRA); the fourth part is policy-executing, and it is composed of universities, polytechnics, public-owned research institutions, private enterprises, and private research institutions. Concerning the framework of Finland’s technology administrative, it can be referred to below. B. The Agency of Finland’s Technology Policy Making and Management (A) The Agency of Finland’s Technology Policy Making   Finland’s technology policies are mainly made by the cabinet, and it means that the cabinet has responsibilities for the master plan, coordinated operation and fund-assignment of national technology policies. The cabinet has two councils, and those are the Economic Council and the Research and Innovation Council, and both of them are chaired by the Prime Minister. The Research and Innovation Council is reshuffled by the Science and Technology Policy Council (STPC) in 1978, and it changed name to the Research and Innovation Council in Jan. 2009. The major duties of the Research and Innovation Council include the assessment of country’s development, deals with the affairs regarding science, technology, innovative policy, human resource, and provides the government with aforementioned schedules and plans, deals with fund-assignment concerning public research development and innovative research, coordinates with all government’s activities upon the area of science, technology, and innovative policy, and executes the government’s other missions.   The Research and Innovation Council is an integration unit for Finland’s national technology policies, and it originally is a consulting agency between the cabinet and Ministries. However, in the actual operation, its scope of authority has already covered coordination function, and turns to direct to make all kinds of policies related to national science technology development. In addition, the consulting suggestions related to national scientific development policies made by the Research and Innovation Council for the cabinet and the heads of Ministries, the conclusion has to be made as a “Key Policy Report” in every three year. The Report has included “Science, Technology, Innovation” in 2006, “Review 2008” in 2008, and the newest “Research and Innovation Policy Guidelines for 2011-2015” in 2010.   Regarding the formation and duration of the Research and Innovation Council, its duration follows the government term. As for its formation, the Prime Minister is a chairman of the Research and Innovation Council, and the membership consists of the Minister of Education and Science, the Minister of Economy, the Minister of Finance and a maximum of six other ministers appointed by the Government. In addition to the Ministerial members, the Council shall comprise ten other members appointed by the Government for the parliamentary term. The Members must comprehensively represent expertise in research and innovation. The structure of Council includes the Council Secretariat, the Administrative Assistant, the Science and Education Subcommittee, and the Technology and Innovation Subcommittee. The Council has the Science and Education Subcommittee and the Technology and Innovation Subcommittee with preparatory tasks. There are chaired by the Ministry of Education and Science and by the Minister of Economy, respectively. The Council’s Secretariat consists of one full-time Secretary General and two full-time Chief Planning Officers. The clerical tasks are taken care of at the Ministry of Education and Culture. (B) The Agency of Finland’s Technology Policy Management   The Ministries mainly take the responsibility for Finland’s technology policy management, which includes the Ministry of Education and Culture, the Ministry of Employment and Economy, the Ministry of Social Affairs and Health, the Ministry of Agriculture and Forestry, the Ministry of Defense, the Ministry of Transport and Communication, the Ministry of Environment, the Ministry of Financial, and the Ministry of Justice. In the aforementioned Ministries, the Ministry of Education and Culture and the Ministry of Employment and Economy are mainly responsible for Finland national scientific technology development, and take charge of national scientific policy and national technical policy, respectively. The goal of national scientific policy is to promote fundamental scientific research and to build up related scientific infrastructures; at the same time, the authority of the Ministry of Education and Culture covers education and training, research infrastructures, fundamental research, applied research, technology development, and commercialization. The main direction of Finland’s national scientific policy is to make sure that scientific technology and innovative activities can be motivated aggressively in universities, and its objects are, first, to raise research funds and maintain research development in a specific ratio; second, to make sure that no matter on R&D institutions or R&D training, it will reach fundamental level upon funding or environment; third, to provide a research network for Finland, European Union and global research; fourth, to support the research related to industries or services based upon knowledge-innovation; fifth, to strengthen the cooperation between research initiators and users, and spread R&D results to find out the values of commercialization, and then create a new technology industry; sixth, to analyze the performance of national R&D system.   As for the Ministry of Employment and Economy, its major duties not only include labor, energy, regional development, marketing and consumer policy, but also takes responsibilities for Finland’s industry and technical policies, and provides industries and enterprises with a well development environment upon technology R&D. The business scope of the Ministry of Employment and Economy puts more focus on actual application of R&D results, it covers applied research of scientific technology, technology development, commercialization, and so on. The direction of Finland’s national technology policy is to strengthen the ability and creativity of industries’ technology development, and its objects are, first, to develop the new horizons of knowledge with national innovation system, and to provide knowledge-oriented products and services; second, to promote the efficiency of the government R&D funds; third, to provide cross-country R&D research networks, and support the priorities of technology policy by strengthening bilateral or multilateral cooperation; fourth, to raise and to broaden the efficiency of research discovery; fifth, to promote the regional development by technology; sixth, to evaluate the performance of technology policy; seventh, to increase the influence of R&D on technological change, innovation and society; eighth, to make sure that technology fundamental structure, national quality policy and technology safety system will be up to international standards. (C) The Agency of Finland’s Technology Policy Management and Subsidy   As to the agency of Finland’s technology policy management and subsidy, it is composed of the Academy of Finland (AOF), the National Technology Agency (Tekes), and the Finnish National Fund Research and Development (SITRA). The fund of AOF comes from the Ministry of Education and Culture; the fund of Tekes comes from the Ministry of Employment and Economy, and the fund of SITRA comes from independent public fund supervised by the Finland’s Congress. (D) The Agency of Finland’s Technology Plan Execution   As to the agency of Finland’s technology plan execution, it mainly belongs to the universities under Ministries, polytechnics, national technology research institutions, and other related research institutions. Under the Ministry of Education and Culture, the technology plans are executed by 16 universities, 25 polytechnics, and the Research Institute for the Language of Finland; under the Ministry of Employment and Economy, the technology plans are executed by the Technical Research Centre of Finland (VTT), the Geological Survey of Finnish, the National Consumer Research Centre; under the Ministry of Social Affairs and Health, the technology plans are executed by the National Institute for Health and Welfare, the Finnish Institute of Occupational Health, and University Central Hospitals; under the Ministry of Agriculture and Forestry, the technology plans are executed by the Finnish Forest Research Institute (Metla), the Finnish Geodetic Institute, and the Finnish Game and Fisheries Research Institute (RKTL); under the Ministry of Defense, the technology plans are executed by the Finnish Defense Forces’ Technical Research Centre (Pvtt); under the Ministry of Transport and Communications, the technology plans are executed by the Finnish Meteorological Institute; under the Ministry of Environment, the technology plans are executed by the Finnish Environment Institute (SYKE); under the Ministry of Financial, the technology plans are executed by the Government Institute for Economic Research (VATT). At last, under the Ministry of Justice, the technology plans are executed by the National Research Institute of Legal Policy.

The EU's New Legal Framework for European Research Infrastructure

Recognized that Research infrastructures (RIs) are at the centre of the knowledge triangle of research, education and innovation and play an increasingly important role in the advancement of knowledge and technology, the EU began to finance for the establishments of RIs by its Framework Programmes (FPs) since the start of FP2 of 1987. On the other hand, the EU also assigned the European Strategy Forum on Research Infrastructures (ESFRI) to develop a coherent and strategy-led approach to policy-making on RIs between Member States and to facilitate the better use and development of RIs at EU and international level. Based on those efforts, the European Commission understood that a major difficulty in setting up RIs between EU countries is the lack of an adequate legal framework allowing the creation of appropriate partnerships and proposed a legal framework for a European research infrastructure adapted to the needs of such facilities. The new legal framework for a European Research Infrastructure Consortium (ERIC) entered into force on 28 August 2009. An successfully-set-up ERIC will have the legal personality based on EU law, and can benefit from exemptions from VAT and excise duty in all EU Member States and may adopt its own procurement procedures to get rid of the EU's public procurement procedures. It is predicted that the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI) will apply to become a BBMRI-ERIC in the near future. The EU also seeks to lead in Energy, Food and Biology through the reforms of ERICs to assist the high quality of activities of European scientists and attract the best researchers from around the world. Besides, in order to connect the knowledge triangle effectively, the European Commission also established the European Institute of Innovation and Technology (EIT) on March 2008. It hopes through the research development partnership network to gather all the advantages from the science and technology chains of multiple areas, and make an effort for the strategy of EU innovation development jointly;Meanwhile, extends its roadmap to the objectives and practices of the Knowledge and Innovation Communities (KICs) of the EIT. Contrast with the EU's advance, it is necessary to our government to concentrate and contemplate whether it is the time to reconsider if our existing legal instruments available to domestic research facilities and infrastructures are sufficient enough to reach our science and technology development goals.

TOP