Hard Law or Soft Law? –Global AI Regulation Developments and Regulatory Considerations

Hard Law or Soft Law?
–Global AI Regulation Developments and Regulatory Considerations

2023/08/18

Since the launch of ChatGPT on November 30, 2022, the technology has been disrupting industries, shifting the way things used to work, bringing benefits but also problems. Several law suits were filed by artists, writers and voice actors in the US, claiming that the usage of copyright materials in training generative AI violates their copyright.[1] AI deepfake, hallucination and bias has also become the center of discussion, as the generation of fake news, false information, and biased decisions could deeply affect human rights and the society as a whole.[2]

To retain the benefits of AI without causing damage to the society, regulators around the world have been accelerating their pace in establishing AI regulations. However, with the technology evolving at such speed and uncertainty, there is a lack of consensus on which regulation approach can effectively safeguard human rights while promoting innovation. This article will provide an overview of current AI regulation developments around the world, a preliminary analysis of the pros and cons of different regulation approaches, and point out some other elements that regulators should consider.

I. An overview of the current AI regulation landscape around the world

The EU has its lead in legislation, with its parliament adopting its position on the AI ACT in June 2023, heading into trilogue meetings that aim to reach an agreement by the end of this year.[3] China has also announced its draft National AI ACT, scheduled to enter its National People's Congress before the end of 2023.[4] It already has several administration rules in place, such as the 2021 regulation on recommendation algorithms, the 2022 rules for deep synthesis, and the 2023 draft rules on generative AI.[5]

Some other countries have been taking a softer approach, preferring voluntary guidelines and testing schemes. The UK published its AI regulation plans in March, seeking views on its sectoral guideline-based pro-innovation regulation approach.[6] To minimize uncertainty for companies, it proposed a set of regulatory principles to ensure that government bodies develop guidelines in a consistent manner.[7] The US National Institute of Standards and Technology (NIST) released the AI Risk Management Framework in January[8], with a non-binding Blueprint for an AI Bill of Rights published in October 2022, providing guidance on the design and use of AI with a set of principles.[9] It is important to take note that some States have drafted regulations on specific subjects, such as New York City’s Final Regulations on Use of AI in Hiring and Promotion came into force in July 2023.[10] Singapore launched the world’s first AI testing framework and toolkit international pilot in May 2022, with the assistance of AWS, DBS Bank, Google, Meta, Microsoft, Singapore Airlines, etc. After a year of testing, it open-sourced the software toolkit in July 2023, to better develop the system.[11]

There are also some countries still undecided on their regulation approach. Australia commenced a public consultation on its AI regulatory framework proposal in June[12], seeking views on its draft AI risk management approach.[13] Taiwan’s government announced in July 2023 to propose a draft AI basic law by September 2023, covering topics such as AI-related definition, privacy protections, data governance, risk management, ethical principles, and industrial promotion.[14] However, the plan was recently postponed, indicating a possible shift towards voluntary or mandatory government principles and guidance, before establishing the law.[15]

II. Hard law or soft law? The pros and cons of different regulatory approaches

One of the key advantages of hard law in AI regulation is its ability to provide binding legal obligations and legal enforcement mechanisms that ensure accountability and compliance.[16] Hard law also provides greater legal certainty, transparency and remedies for consumers and companies, which is especially important for smaller companies that do not have as many resources to influence and comply with fast-changing soft law.[17] However, the legislative process can be time-consuming, slower to update, and less agile.[18] This poses the risk of stifling innovation, as hard law inevitably cannot keep pace with the rapidly evolving AI technology.[19]

In contrast, soft law represents a more flexible and adaptive approach to AI regulation. As the potential of AI still remains largely mysterious, government bodies can formulate principles and guidelines tailored to the regulatory needs of different industry sectors.[20] In addition, if there are adequate incentives in place for actors to comply, the cost of enforcement could be much lower than hard laws. Governments can also experiment with several different soft law approaches to test their effectiveness.[21] However, the voluntary nature of soft law and the lack of legal enforcement mechanisms could lead to inconsistent adoption and undermine the effectiveness of these guidelines, potentially leaving critical gaps in addressing AI's risks.[22] Additionally, in cases of AI-related harms, soft law could not offer effective protection on consumer rights and human rights, as there is no clear legal obligation to facilitate accountability and remedies.[23]

Carlos Ignacio Gutierrez and Gary Marchant, faculty members at Arizona State University (ASU), analyzed 634 AI soft law programs against 100 criteria and found that two-thirds of the program lack enforcement mechanisms to deliver its anticipated AI governance goals. He pointed out that credible indirect enforcement mechanisms and a perception of legitimacy are two critical elements that could strengthen soft law’s effectiveness.[24] For example, to publish stem cell research in top academic journals, the author needs to demonstrate that the research complies with related research standards.[25] In addition, companies usually have a greater incentive to comply with private standards to avoid regulatory shifts towards hard laws with higher costs and constraints.[26]

III. Other considerations

Apart from understanding the strengths and limitations of soft law and hard law, it is important for governments to consider each country’s unique differences. For example, Singapore has always focused on voluntary approaches as it acknowledges that being a small country, close cooperation with the industry, research organizations, and other governments to formulate a strong AI governance practice is much more important than rushing into legislation.[27] For them, the flexibility and lower cost of soft regulation provide time to learn from industries to prevent forming rules that aren’t addressing real-world issues.[28] This process allows preparation for better legislation at a later stage.

Japan has also shifted towards a softer approach to minimize legal compliance costs, as it recognizes its slower position in the AI race.[29] For them, the EU AI Act is aiming at regulating Giant Tech companies, rather than promoting innovation.[30] That is why Japan considers that hard law does not suit the industry development stage they’re currently in.[31] Therefore, they seek to address legal issues with current laws and draft relevant guidance.[32]

IV. Conclusion

As the global AI regulatory landscape continues to evolve, it is important for governments to consider the pros and cons of hard law and soft law, and also country-specific conditions in deciding what’s suitable for the country. Additionally, a regular review on the effectiveness and impact of their chosen regulatory approach on AI’s development and the society is recommended.

 

[1] ChatGPT and Deepfake-Creating Apps: A Running List of Key AI-Lawsuits, TFL, https://www.thefashionlaw.com/from-chatgpt-to-deepfake-creating-apps-a-running-list-of-key-ai-lawsuits/ (last visited Aug 10, 2023); Protection for Voice Actors is Artificial in Today’s Artificial Intelligence World, The National Law Review, https://www.natlawreview.com/article/protection-voice-actors-artificial-today-s-artificial-intelligence-world (last visited Aug 10, 2023).

[2] The politics of AI: ChatGPT and political bias, Brookings, https://www.brookings.edu/articles/the-politics-of-ai-chatgpt-and-political-bias/ (last visited Aug 10, 2023); Prospect of AI Producing News Articles Concerns Digital Experts, VOA, https://www.voanews.com/a/prospect-of-ai-producing-news-articles-concerns-digital-experts-/7202519.html (last visited Aug 10, 2023).

[3] EU AI Act: first regulation on artificial intelligence, European Parliament, https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence (last visited Aug 10, 2023).

[4] 中國國務院發布立法計畫 年內審議AI法草案,經濟日報(2023/06/09),https://money.udn.com/money/story/5604/7223533 (last visited Aug 10, 2023).

[5] id

[6] A pro-innovation approach to AI regulation, GOV.UK, https://www.gov.uk/government/publications/ai-regulation-a-pro-innovation-approach/white-paper (last visited Aug 10, 2023).

[7] id

[8] AI RISK MANAGEMENT FRAMEWORK, NIST, https://www.nist.gov/itl/ai-risk-management-framework (last visited Aug 10, 2023).

[9] The White House released an ‘AI Bill of Rights’, CNN, https://edition.cnn.com/2022/10/04/tech/ai-bill-of-rights/index.html (last visited Aug 10, 2023).

[10] New York City Adopts Final Regulations on Use of AI in Hiring and Promotion, Extends Enforcement Date to July 5, 2023, Littler https://www.littler.com/publication-press/publication/new-york-city-adopts-final-regulations-use-ai-hiring-and-promotionv (last visited Aug 10, 2023).

[11] IMDA, Fact sheet - Open-Sourcing of AI Verify and Set Up of AI Verify Foundation (2023), https://www.imda.gov.sg/-/media/imda/files/news-and-events/media-room/media-releases/2023/06/7-jun---ai-annoucements---annex-a.pdf (last visited Aug 10, 2023).

[12] Supporting responsible AI: discussion paper, Australia Government Department of Industry, Science and Resources,https://consult.industry.gov.au/supporting-responsible-ai (last visited Aug 10, 2023).

[13] Australian Government Department of Industry, Science and Resources, Safe and responsible AI in Australia (2023), https://storage.googleapis.com/converlens-au-industry/industry/p/prj2452c8e24d7a400c72429/public_assets/Safe-and-responsible-AI-in-Australia-discussion-paper.pdf (last visited Aug 10, 2023).

[14] 張璦,中央通訊社,AI基本法草案聚焦隱私保護、應用合法性等7面向 擬設打假中心,https://www.cna.com.tw/news/ait/202307040329.aspx (最後瀏覽日:2023/08/10)。

[15] 蘇思云,中央通訊社,2023/08/01,鄭文燦:考量技術發展快應用廣 AI基本法延後提出,https://www.cna.com.tw/news/afe/202308010228.aspx (最後瀏覽日:2023/08/10)。

[16] supra, note 13, at 27.

[17] id.

[18] id., at 28.

[19] Soft law as a complement to AI regulation, Brookings, https://www.brookings.edu/articles/soft-law-as-a-complement-to-ai-regulation/ (last visited Aug 10, 2023).

[20] supra, note 5.

[21] Gary Marchant, “Soft Law” Governance of Artificial Intelligence (2019), https://escholarship.org/uc/item/0jq252ks (last visited Aug 10, 2023).

[22] How soft law is used in AI governance, Brookings,https://www.brookings.edu/articles/how-soft-law-is-used-in-ai-governance/ (last visited Aug 10, 2023).

[23] supra, note 13, at 27.

[24] Why Soft Law is the Best Way to Approach the Pacing Problem in AI, Carnegie Council for Ethics in International Affairs,https://www.carnegiecouncil.org/media/article/why-soft-law-is-the-best-way-to-approach-the-pacing-problem-in-ai (last visited Aug 10, 2023).

[25] id.

[26] id.

[28] id.

[29] Japan leaning toward softer AI rules than EU, official close to deliberations says, Reuters, https://www.reuters.com/technology/japan-leaning-toward-softer-ai-rules-than-eu-source-2023-07-03/ (last visited Aug 10, 2023).

[30] id.

[31] id.

[32] id.

 

※Hard Law or Soft Law? –Global AI Regulation Developments and Regulatory Considerations,STLI, https://stli.iii.org.tw/en/article-detail.aspx?no=105&tp=2&i=168&d=9051 (Date:2024/05/23)
Quote this paper
You may be interested
Executive Yuan’s call to action:“Industrial Upgrading and Transformation Action Plan”

I.Introduction Having sustained the negative repercussions following the global financial crisis of 2008, Taiwan’s average economic growth rate decreased from 4.4 percent (during 2000-2007 years) to 3 percent (2008-2012). This phenomenon highlighted the intrinsic problems the Taiwanese economic growth paradigm was facing, seen from the perspective of its development momentum and industrial framework: sluggish growth of the manufacturing industries and the weakening productivity of the service sector. Moreover, the bleak investment climate of the post-2008 era discouraged domestic investors injecting capital into the local economy, rendering a prolonged negative investment growth rate. To further exacerbation, the European Debt Crisis of 2011 – 2012 has impacted to such detriment of private investors and enterprises, that confidence and willingness to invest in the private sector were utterly disfavored. It can be observed that as Taiwan’s industrial core strength is largely concentrated within the the manufacturing sector, the service sector, on the other hand, dwindles. Similarly, the country’s manufacturing efforts have been largely centered upon the Information & Communications Technology (ICT) industry, where the norm of production has been the fulfillment of international orders in components manufacturing and Original Equipment Manufacturing (OEM). Additionally, the raising-up of society’s ecological awareness has further halted the development of the upstream petrochemical and metal industry. Consumer goods manufacturing growth impetus too has been stagnated. Against the backdrop of the aforementioned factors at play as well as the competitive pressure exerted on Taiwan by force of the rapid global and regional economic integration developments, plans to upgrade and transform the existing industrial framework, consequently, arises out as an necessary course of action by the state. Accordingly, Taiwan’s Executive Yuan approved and launched the “Industrial Upgrading and Transformation Action Plan”, on the 13th of October 2014, aiming to reform traditional industries, reinforcing core manufacturing capacities and fostering innovative enterprises, through the implementation of four principal strategies: Upgrading of Product Grade and Value, Establishment of Complete Supply Chain, Setting-up of System Integration Solutions Capability, Acceleration of Growth in the Innovative Sector. II.Current challenges confronting Taiwanese industries 1.Effective apportionment of industrial development funds Despite that Research and Development (R&D) funds takes up 3.02% of Taiwan’s national GDP, there has been a decrease of the country’s investment in industrial and technology research. Currently Taiwan’s research efforts have been directed mostly into manufacturing process improvement, as well as into the high-tech sector, however, traditional and service industries on the other hand are lacking in investments. If research funds for the last decade could be more efficiently distributed, enterprises would be equally encouraged to likewise invest in innovation research. However, it should be noted that Taiwan’s Small and Medium Enterprises (SME) based on their traditional developmental models, do not place research as their top priority. Unlike practices in countries such as Germany and Korea, the research fund input by private enterprises into academic and research institutions is still a relatively unfamiliar exercise in Taiwan. With regards to investment focus, the over-concentration in ICTs should be redirected to accommodate growth possibilities for other industries as well. It has been observed that research investments in the pharmaceutical and electric equipment manufacturing sector has increased, yet in order to not fall into the race-to-the-bottom trap for lowest of costs, enterprises should be continually encouraged to develop high-quality and innovative products and services that would stand out. 2.Human talent and labor force issues Taiwan’s labor force, age 15 to 64, will have reached its peak in 2015, after which will slowly decline. It has been estimated that in 2011 the working population would amount to a meager 55.8%. If by mathematical deduction, based on an annual growth rate of 3%, 4% and 5%, in the year 2020 the labor scarcity would increase from 379,000, 580,000 to 780,000 accordingly. Therefore, it is crucial that productivity must increase, otherwise labor shortage of the future will inevitably stagnate economic growth. Notwithstanding that Taiwan’s demographical changes have lead to a decrease in labor force; the unfavorable working conditions so far has induced skilled professionals to seek employment abroad. The aging society along with decrease in birth rates has further exacerbated the existing cul-de-sac in securing a robust workforce. In 1995 the employment rate under the age of 34 was 46.35%, yet in 2010 it dropped to a daunting 37.6%. 3.Proportional land-use and environmental concerns Taiwan’s Environmental Impact Assessment (EIA) is a time-consuming and often unpredictable process that has substantially deterred investor’s confidence. Additionally, there exists a disproportionate use of land resources in Taiwan, given that demand for its use predominantly stems from the northern and middle region of the country. Should the government choose to balance out the utilization of land resources across Taiwan through labor and tax policies, the situation may be corrected accordingly. III.Industrial Upgrading and Transformation Strategies The current action plan commences its implementation from October 2014 to end of December 2024. The expected industrial development outcomes are as follows: (1) Total output value of the manufacturing sector starting from 2013 at NTD 13.93 trillion is expected to grow in 2020 to NTD 19.46 trillion. (2) Total GDP of the service sector, starting at 3.03 trillion from 2011 is expected to grow in 2020 to 4.75 trillion NTD. 1.Strategy No.1 : Upgrading of product grade and value Given that Taiwan’s manufacturing industry’s rate for added value has been declining year after year, the industry should strive to evolve itself to be more qualitative and value-added oriented, starting from the development of high-end products, including accordingly high-value research efforts in harnessing essential technologies, in the metallic materials, screws and nuts manufacturing sector, aviation, petrochemical, textile and food industries etc. (1) Furtherance of quality research Through the employment of Technology Development Program (TDP) Organizations, Industrial TDP and Academic TDP, theme-based and pro-active Research and Development programs, along with other related secondary assistance measures, the industrial research capability will be expanded. The key is in targeting research in high-end products so that critical technology can be reaped as a result. (2) Facilitating the formation of research alliances with upper-, mid- and downstream enterprises Through the formation of research and development alliances, the localization of material and equipment supply is secured; hence resulting in national autonomy in production capacity. Furthermore, supply chain between industrial component makers and end-product manufacturers are to be conjoined and maintained. National enterprises too are to be pushed forth towards industrial research development, materializing the technical evolution of mid- and downstream industries. (3) Integrative development assistance in Testing and Certification The government will support integrative development in testing and certification, in an effort to boost national competitive advantage thorough benefitting from industrial clusters as well as strengthening value-added logistics services, including collaboration in related value-added services. (4) Establishment of international logistics centre Projection of high-value product and industrial cluster image, through the establishment of an international logistics centre. 2.Strategy No.2 : Establishment of a Complete Supply Chain The establishing a robust and comprehensive supply chain is has at its aim transforming national production capabilities to be sovereign and self-sustaining, without having to resort to intervention of foreign corporations. This is attained through the securing of key materials, components and equipments manufacturing capabilities. This strategy finds its application in the field of machine tool controllers, flat panel display materials, semiconductor devices (3D1C), high-end applications processor AP, solar cell materials, special alloys for the aviation industry, panel equipment, electric vehicle motors, power batteries, bicycle electronic speed controller (ESC), electrical silicon steel, robotics, etc. The main measures listed are as follows: (1) Review of industry gaps After comprehensive review of existing technology gaps depicted by industry, research and academic institutions, government, strategies are to be devised, so that foreign technology can be introduced, such as by way of cooperative ventures, in order to promote domestic autonomous development models. (2) Coordination of Research and Development unions – building-up of autonomous supply chain. Integrating mid- and downstream research and development unions in order to set up a uniform standard in equipment, components and materials in its functional specifications. (3) Application-theme-based research programs Through the release of public notice, industries are invited to submit research proposals focusing on specific areas, so that businesses are aided in developing their own research capabilities in core technologies and products. (4) Promotion of cross-industry cooperation to expand fields of mutual application Continuously expanding field of technical application and facilitating cross-industry cooperation; Taking advantage of international platform to induce cross-border technical collaboration. 3.Strategy No.3 : Setting-up of System Integration Solutions capability Expanding turnkey-factory and turnkey-project system integration capabilities, in order to increase and stimulate export growth; Combination of smart automation systems to strengthen hardware and software integration, hence, boosting system integration solution capacity, allowing stand-alone machinery to evolve into a total solution plant, thus creating additional fields of application and services, effectively expanding the value-chain. These type of transitions are to be seen in the following areas: turnkey-factory and turnkey-project exports, intelligent automated manufacturing, cloud industry, lifestyle (key example: U-Bike in Taipei City) industry, solar factory, wood-working machinery, machine tools, food/paper mills, rubber and plastic machines sector. Specific implementation measure s includes: (1) Listing of national export capability – using domestic market as test bed for future global business opportunities Overall listing of all national system integration capabilities and gaps and further assistance in building domestic “test beds” for system integration projects, so that in the future system-integration solutions can be exported abroad, especially to the emerging economies (including ASEAN, Mainland China) where business opportunities should be fully explored. The current action plan should simultaneously assist these national enterprises in their marketing efforts. (2) Formation of System Integration business alliances and Strengthening of export capability through creation of flagship team Formation of system integration business alliances, through the use of national equipment and technology, with an aim to comply with global market’s needs. Promotion of export of turnkey-factory and turnkey-projects, in order to make an entrance to the global high-value system integration market. Bolstering of international exchanges, allowing European and Asian banking experts assist Taiwanese enterprises in enhancing bids efforts. (3) Establishing of financial assistance schemes to help national enterprises in their overseas bidding efforts Cooperation with financial institutes creating financial support schemes in syndicated loans for overseas bidding, in order to assist national businesses in exporting their turnkey-factories and turnkey-solutions abroad. 4. Strategy No.4 : Acceleration of growth in the innovative sectors Given Taiwan economy’s over-dependence on the growth of the electronics industry, a new mainstream industry replacement should be developed. Moreover, the blur distinction between the manufacturing, service and other industries, presses Taiwan to develop cross-fields of application markets, so that the market opportunities of the future can be fully explored. Examples of these markets include: Smart Campus, Intelligent Transportation System, Smart Health, Smart City, B4G/5G Communications, Strategic Service Industries, Next-Generation Semiconductors, Next-Generation Visual Display, 3D Printing, New Drugs and Medical Instruments, Smart Entertainment, Lifestyle industry (for instance the combination of plan factory and leisure tourism), offshore wind power plant, digital content (including digital learning), deep sea water. Concrete measures include: (1) Promotion of cooperation between enterprises and research institutions to increase efficiency in the functioning of the national innovation process Fostering of Industry-academic cooperation, combining pioneering academic research results with efficient production capability; Cultivation of key technology, accumulation of core intellectual property, strengthening integration of industrial technology and its market application, as well as, establishment of circulation integration platform and operational model for intellectual property. (2) Creating the ideal Ecosystem for innovation industries Strategic planning of demo site, constructing an ideal habitat for the flourishing of innovation industries, as well as the inland solution capability. Promotion of international-level testing environment, helping domestic industries to be integrated with overseas markets and urging the development of new business models through open competition. Encouraging international cooperation efforts, connecting domestic technological innovation capacities with industries abroad. (3) Integration of Cross-Branch Advisory Resources and Deregulation to further support Industrial Development Cross-administrations consultations further deregulation to support an ideal industrial development environment and overcoming traditional cross-branch developmental limitations in an effort to develop innovation industries. IV. Conclusion Taiwan is currently at a pivotal stage in upgrading its industry, the role of the government will be clearly evidenced by its efforts in promoting cross-branch/cross-fields cooperation, establishing a industrial-academic cooperation platform. Simultaneously, the implementation of land, human resources, fiscal, financial and environmental policies will be adopted to further improve the investment ambient, so that Taiwan’s businesses, research institutions and the government could all come together, endeavoring to help Taiwan breakthrough its currently economic impasse through a thorough industrial upgrading. Moreover, it can be argued that the real essence of the present action plan lies in the urge to transform Taiwan’s traditional industries into incubation centers for innovative products and services. With the rapid evolution of ICTs, accelerating development and popular use of Big Data and the Internet of Things, traditional industries can no longer afford to overlook its relation with these technologies and the emerging industries that are backed by them. It is only through the close and intimate interconnection between these two industries that Taiwan’s economy would eventually get the opportunity to discard its outdated growth model based on “quantity” and “cost”. It is believed that the aforementioned interaction is an imperative that would allow Taiwanese industries to redefine its own value amidst fierce global market competition. The principal efforts by the Taiwanese government are in nurturing such a dialogue to occur with the necessary platform, as well as financial and human resources. An illustration of the aforementioned vision can be seen from the “Industrie 4.0” project lead by Germany – the development of intelligent manufacturing, through close government, business and academic cooperation, combining the internet of things development, creating promising business opportunities of the Smart Manufacturing and Services market. This is the direction that Taiwan should be leading itself too. References 1.Executive Yuan, Republic of China http://www.ey.gov.tw/en/(last visited: 2015.02.06) 2.Industrial Development Bureau, Ministry of Economic Affairs http://www.moeaidb.gov.tw/(last visited: 2015.02.06) 3.Industrial Upgrading and Transformation Action Plan http://www.moeaidb.gov.tw/external/ctlr?PRO=filepath.DownloadFile&f=policy&t=f&id=4024(last visited: 2015.02.06)

The Status of Taiwan's Regulations Concerning with Access to Biological Resources

Preface In actual practice, the research and development of biotech medicine, food, and environmental products cannot be done by in-lab researches. This is a unique character of the biotechnology industry. To get the research going, the researchers need to search for and exploit new biological materials and, samples outside the lab. Therefore, the access to and management of biological resources have significant impact on the stimulation and development of national biotech industry. Ever since the enforcement of Convention on Biological Diversity (CBD) in 1992 by 172 countries, a general principal about conserving biological diversity and using biological resources has been set. According to CBD, States have sovereign rights over their own biological resources. CBD also encourages each State to access to and manage the biological resources conformed with the principals of conservation, sustainability, NOEL environment friendly, and adequate sharing of benefit arising from biological resources. Therefore, issues such as environmental protection and sustainability have become political issues internationally. If the ABS system for the access to biological resources is designed too strictly, the establishment of the system will make the research and development staffs and related institutions hang back with hesitation both domestically and internationally. Their intention of bioprospecting in the designated country will then be reduced. On the other hand, if the system is designed too loosely, it will not be able to protect the rights of the owner of the resources. As a result, currently, every country holds a cautious attitude in setting up the regulations of managing the access to biological resources. Currently, many countries and regional international organizations already set up ABS system, such as Andean Community, African Union, Association of Southeast Asia Nations (ASEAN), Australia, South Africa, and India, all are enthusiastic with the establishment of the regulations regarding the access management of biological resources and genetic resources. On the other hand, there are still many countries only use traditional and existing conservation-related regulations to manage the access of biological resources. Since it has been more than 10 years that the regulation of access to biological resources and benefit sharing has been developed in some countries, how is Taiwan's current situation regarding this issue? Taiwan's Existing Regulations on the Access to Bioloical Resources In terms of regulations, Taiwan's existing management style of the access to biological resources is similar to that of the US and the EU. It refers to the existing regulations on environmental protection and conservation, and evaluates from the perspective of environmental protection to control and manage the exploitation and application of the related biological resources. These regulations include the Wildlife Conservation Act, theNational Park Law, the Forestry Act, the Cultural Heritage Preservation Act, and the Aboriginal Basic Act. The paragraphs below describe the contents of the acts mentioned that are related to the access to biological resources. 1 、 Wildlife Conservation Act According to the Wildlife Conservation Act, the Protected Species and the products made of cannot be hunted, traded, owned, imported, exported, raised, bred, and processed unless the number of protected wildlife has exceeded the amount the environment permits, or carry the objectives of academic research and education with the permits of central or regional authorities. As for the hunting of General Wildlife, pre-application and approval is needed with the exception of projects based on the objectives of academic research or education. In addition, the import and export of the living wildlife and the products of Protected Wildlife are restricted to the condition of being permitted by management authority. With respect to the import and export of living Protected Wildlife, Academic research institutions and colleagues are the only person who can seek for the approval of management authority before they proceed. 2 、 National Park Law The design and management of Taiwan's national parks are based on the regulations listed in the National Park Law with the purpose of protecting our country's exclusive natural scenery, wildlife and historical spots. Based on the properties and the nature of resources, the national park management structures the preserved area into general control area, playground and resting area, spot of historical interest, special landmark area, and ecological protection area. Ecological protection area refers to the areas where the natural surroundings, creatures, the society they live and propagate are strictly protected only for the research of ecology. According to the regulation of National Park Law, inside the national park area, it is prohibited to hunt animals, fish, take off flowers or trees, not to mention the behaviours that are prohibited by the management authority. Exceptions are made based on the conditions of preserved areas and for the research purposes. In the general control area or resting area, the national park authority allows fishing or other activities agreed by the authority. However, these activities are prohibited in the preserved area of historical interest, special landmark area, and ecological protection area. To suit special purposes, in the special landmark area or ecological protection area, collection of specimens is allowed subject to the approval of authority. Under the purpose of academic research, better management of public safety, and special management of national park, the Ministry of the Interior will permit the collection of specimen. However, to enter the ecological protection area, one must obtain the permission of authority. 3 、 Forestry Act To protect the forest resources and to maximize the public welfare and economic effectiveness, some of the properties are classified as forestry land and being managed by authority. Based on the Forestry Act, management authority has to restrict the area of cutting timber and to identify the area or period of restricted digging of greensward, tree roots, and grass roots, based on the condition of the forest. In addition, to maintain the current ecological environment in the forest, and to preserve the diversity of species, identification of natural preserved area is needed inside the forestland. The entrance and exit of human and vehicles are controlled based on the nature of the resources inside the preserve area. Unless obtaining the approval from the management authority, not a single activity of damaging, logging or digging soil, stones, greensward and roots is allowed. Furthermore, any unauthorized activity of collecting specimen inside the forest recreation area and natural reserve will be fined. Collecting flowers and plants in these areas, or trespassing the natural reserve will also be fined. Only the activities taken by the aborigines to sustain their living or accommodate their customs are not restricted. 4 、 Cultural Heritage Preservation Act The objectives of setting up the Cultural Heritage Preservation Act are to preserve and apply the cultural resources, to enrich the spiritual lives of citizens, and to add glory to the existing diverse cultures. The Cultural Heritage Preservation Act classifies the natural landscape and scenery as cultural assets. Vistas of Natural Culture refer to the natural areas, landforms, plants and mineral which contain the values of preservation. It can be further grouped into natural preserved area and natural monuments. Since the natural monuments include the unusual plants and mineral, it is connected to the management of biological resources. According to the Cultural Heritage Preservation Act, unless approved by the management authority, it is prohibited to collect, log, destroy the plants or bio resources classified as natural monuments or trespass into the area of natural preserve. For the purposes of academic research, or for the memorial ceremony of aboriginal custom, research institute and the aborigines can collect the natural monuments without the approval of authority. 5 、 Aboriginal Basic Act To protect the basic rights of the aborigines, and to sustain and develop the aboriginal society, the Aboriginal Basic Act was designed and enacted. The government not only admits the aborigine's rights in lands and natural resources, but also permits the non-profit behaviour such as hunting of wildlife, colleting of wild plants and fungi for the objective of complying with traditional culture, ceremony or private uses. In addition, the Aboriginal Basic Act provides the requirement of Prior Informed Consent (PIC) to require government or private individual to inform the aborigines before they proceed with land development, resource exploitation, ecological preservation, and academic research in the land where the aborigines live. They need to consult and obtain the aborigines' agreement or participation, and to share the related interests derived from this project. In the case of restricting the aborigine's right of the use of land or natural resources by law, the government,shall consult with the aborigines or the tribe and reach the agreement. When the government wish to design and establish national park, national scenic area, forestry area, ecological protection area, recreational area, or other resource management authorities, the government should obtain the agreement from the local aborigines and to build up the co-management mechanism.

Taiwan Planed Major Promoting Program for Biotechnology and Pharmaceutical Industry

Taiwan Government Lauched the “Biotechnology Action Plan” The Taiwan Government has planned to boost the support and develop local industries across the following six major sectors: biotechnology, tourism, health care, green energy, innovative culture and post-modern agriculture. As the biotechnology industry has reached its maturity by the promulgation of "Biotech and New Pharmaceutical Development Act" in July, 2007, it will be the first to take the lead among the above sectors. Thus, the Executive Yuan has launched the Biotechnology Action Plan as the first project in building the leading industry sectors, to upgrade local industries and stimulate future economic growth. Taiwan Government Planed to Promote the Biotechnology and Other newly Industries by Investing Two Hundred Billion To expand every industrial scale, enhance industrial value, increase the value around the main industrial field, and to encourage the industrial development by government investments for creating the civil working opportunities to reach the goal of continuous economic development, the Executive Yuan Economic Establishment commission has expressed that, the government has selected six newly industrials including "Biotechnology", "Green Energy", "Refined Agriculture", "Tourism", "Medicare", and "Culture Originality" on November 19, 2009 to promote our national economic growth. The government will invest two hundred billion NT dollars to support the industrial development aggressively and to enhance the social investments from year 2009 to 2012. According to a Chung-Hua Institution for Economic Research report, the future growth rate will reach 8.16% after the evaluation, Hence, the future of the industries seems to be quite bright. Currently, the government plans to put money into six newly industries through the existing ways for investment. For instance, firstly, in accordance with the "Act For The Development Of Biotech And New Pharmaceuticals Industry" article 5 provision 1 ",for the purpose of promoting the Biotech and New Pharmaceuticals Industry, a Biotech and New Pharmaceuticals Company may, for a period of five years from the time it is subject to corporate income tax, enjoy a reduction in its corporate income tax payable for up to thirty-five percent (35%) of the total funds invested in research and development ("R&D") and personnel training each year; provided, however, that if the R&D expenditure of a particular year exceeds the average R&D expenditure of the previous two years or if the personnel training expenditure of a particular year exceeds the average personnel training expenditure of the previous two years, fifty percent (50%) of the amount in excess of the average may be used to credit against the amount of corporate income tax payable. Secondly, according to same act of the article 6 provision 1 ", in order to encourage the establishment or expansion of Bio tech and New Pharmaceuticals Companies, a profit-seeking enterprise that (i) subscribes for the stock issued by a Biotech and New Pharmaceuticals Company at the time of the latter's establishment or subsequent expansion; and (ii) has been a registered shareholder of the Biotech and New Pharmaceuticals Company for a period of three (3) years or more, may, for a period of five years from the time it is subject to corporate income tax, enjoy a reduction in its corporate income tax payable for up to twenty percent (20%) of the total amount of price paid for the subscription of shares in such Biotech and New Pharmaceuticals Company; provided that such Biotech and New Pharmaceuticals Company has not applied for exemption from corporate income tax or shareholders investment credit based on the subscription price under other applicable laws and regulations. Thirdly, to promote the entire biotechnological industry development, the government has drafted the "Biotechnology Takeoff Package" for subsidizing the startup´s social investment companies which can satisfy the conditions to invest in "Drug discovery", "Medical Device" or other related biotech industries up to 5 billion with the capital invest in domestic industry over 50%, , with operating experience of multinational biotech investment companies with capital over 150 million in related industrial fields, and with the working experiences of doctor accumulated up to 60 years. Additionally, the refined agriculture industry field has not only discovered the gene selected products, but also combined the tourism with farming business for new business model creation. According to the "Guidelines for Preferential Loans for the Upgrading of Tourism Enterprises" point 4 provision 1, the expenditure for spending on machine, instruments, land or repairing can be granted a preferential loan in accordance with the rule of point 6, and government will provide a subsidy of interest for loaning Tourism Enterprises with timely payments. At last, Council for Economic Planning and Development also points out because most of technology industry has been impacted seriously by fluctuation of international prosperity due to conducting the export trade oriented strategy. Furthermore, the aspects of our export trade of technology industry have been impacted by the U.S. financial crisis and the economic decay in EU and US; and the industrial development seems to face the problem caused by over centralization in Taiwan. Hence, the current framework of domestic industry should be rearranged and to make it better by promoting the developmental project of six newly industries. Taiwan Government Had Modifies Rules to Accelerate NDA Process and Facilitate Development of Clinical Studies in Taiwan In July 2007, the "Biotech and New Pharmaceutical Development Act" modified many regulations related to pharmaceutical administration, taxes, and professionals in Taiwan. In addition, in order to facilitate the development of the biotechnology and pharmaceutical industries, the government has attempted to create a friendly environment for research and development by setting up appropriate regulations and application systems. These measures show that the Taiwanese government is keenly aware that these industries have huge potential value. To operate in coordination with the above Act and to better deal with the increasing productivity of pharmaceutical R&D programs in Taiwan, the Executive Yuan simplified the New Drug Application (NDA) process to facilitate the submission that required Certificate of Pharmaceutical Product (CPP) for drugs with new ingredients. The current NDA process requires sponsors to submit documentation as specified by one of the following four options: (1) three CPPs from three of "ten medically-advanced countries," including Germany, the U.S., England, France, Japan, Switzerland, Canada, Australia, Belgium, and Sweden; (2) one CPP from the U.S., Japan, Canada, Australia, or England and one CPP from Germany, France, Switzerland, Sweden, or Belgium; (3) a Free Sale Certificate (FSC) from one of ten medically-advanced countries where the pharmaceuticals are originally produced and one CPP from one of the other nine countries; or (4) a CPP from the European Medicines Agency. Thus, the current NDA process requires sponsors to spend inordinate amounts of time and incur significant costs to acquire two or three FSCs or CPPs from ten medically-advanced countries in order to submit an NDA in Taiwan. According to the new rules, sponsors will not have to submit above CPPs if (1) Phase I clinical studies have been conducted in Taiwan, and Phase III Pivotal Trial clinical studies have been simultaneously conducted both in Taiwan and in another country or (2) Phase II and Phase III Pivotal Trial clinical studies have been simultaneously conducted both in Taiwan and in another country. Besides, the required minimum numbers of patients were evaluated during each above phase. Therefore, sponsors who conduct clinical studies in Taiwan and in another country simultaneously could reduce their costs and shorten the NDA process in Taiwan. The new rules aim to encourage international pharmaceutical companies to conduct clinical studies in Taiwan or to conduct such studies cooperatively with Taiwanese pharmaceutical companies. Such interactions will allow Taiwanese pharmaceutical companies to participate in development and implementation of international clinical studies in addition to benefiting from the shortened NDA process. Therefore, the R&D abilities and the internationalization of the Taiwanese pharmaceutical industry will be improved.

A Discussion on Introducing the Concept of “Government Procurement Innovation” and Suggestions for Legislation

I. Introduction In Finland, the Finnish Funding Agency for Technology and Innovation, or TEKES1, has proposed the Innovations in Public Procurement, or IPP2, which can be seen as the origin of innovative government procurement solutions all over the world. As such, this paper is an attempt to explore the possibility of introducing improvements to government innovation, within procurement in the Republic of China (ROC). The IPP scheme of Finland may be used as an observational tool for the analysis of innovative ideas within the international community, for comparison with government procurement, the legislation of the scientific research subsidy, and scientific research procurement currently effective in ROC. The findings could serve as a reference for related government agencies. The concept of Public Procurement of Innovation, or PPI, in the EU could serve as the benchmark for the ROC on studying the feasibility of introducing this system. In this paper an analysis of the legal system of the ROC will be conducted in the first place to clarify the objective of introducing the concept of PPI into existing legal procedures. This is particularly the case, since that subsidy and procurement do indeed form the two-pronged policy that is currently in effect. First of all, is PPI essential to the systems that could be or could only be enforced under “government procurement”? Secondly, could PPI be introduced into relevant procedures, as explained in preceding sections? Are there any provisions of law that could be amended for such a purpose? And in what direction should we focus our attention? The concept of PPI is a solution under rapid social change, certain products or services are scarce or absent for coping with the needs of rapid social change, to the extent that an innovative solution is necessary. In addition, government procurement is the tool for encouraging the proposal of innovative solutions to mold a friendly market through the participation of the users. (But we have to be cautious. This need is different from green procurement, which requires government procurement to create a market of pre-commercialized purchase 3.) The procurement and innovation subsidy by TEKES of Finland takes the public sector as the recipients of subsidy so that the recipients of subsidy could introduce the mode of dialogue between the users and the suppliers in the course of procurement. At the planning stage of the IPP in Finland, government agencies could receive a subsidy ranging from 25% to 75% of expenditure (including the provision of technology dialogue with different targets, long-term development analysis, the design of the specification for the subject matter that is purchased comparison of different solutions) for the service programs provided by the suppliers. During the implementation stage of procurement, purchasing government agencies could also receive a subsidy of 75% for expenditure on innovation projects procured by the government under subsidy at planning stage, on the performance of tasks during research and development at the implementation stage. Or, they could be subsidized up to 50% for spending on tasks beyond research and development. The content of subsidy includes equipment, service (including management fees), travelling expenses, and other necessary expenses. The recipients of a subsidy from TEKES at these two stages, is dictated by the extent to which these government agencies are able to introduce the spirit of procurement innovation at planning and implementation stages. As such, the legal foundation for the introduction of PPI into scientific research subsidy within the ROC will be an immediate concern. In concrete terms, this is the legality of the agency for advocacy of industrial technology research and development in subsidizing government agencies using national science and technology development funds of the Executive Yuan (also known as Science Development Fund); the legality of the authority of Industrial Technology Department in subsidizing other departments of the public sector, and the issues of the applicability of the Scientific Research Procurement Monitoring Regulation to the appointment of external institutions for conducting market surveys on such needs by the public sector (collectively known as “the issues of subsidizing for innovation”). In seeking a solution on subsidy, we still have to fit dialogue between the recipients of a subsidy during the course of a ‘procurement’ project, within the legal framework currently in force. The fundamental spirit and primary concern for government procurement in the ROC, for example, will be the prevention of misconduct and corruption during the procurement procedure4. It is necessary to state such a requirement within the law, in order to avoid allegations of manipulation during the bidding process. Only by so doing could the spirit of PPI be introduced into the process. In other words, it would be a matter of sorting out the recipients of scientific research subsidy, government procurement, and scientific research procurement without causing a contradiction between “the participation of the suppliers and users of the end-requirement or service, in the determination of the specification, terms and conditions of the procurement” from the PPI of Finland and the applicable laws currently in force. It would be necessary to design the details of the procedures (collectively known as the “issues of innovation dialogue”), which takes up the second part of this research. In summary, this paper aims to explore the dialogue of aspects of government procurement, scientific research subsidy, and scientific research procurement. It is also an attempt to analyze the gravity of PPI and the dialogue. Finally, the findings of the discussion on the introduction of the concept of PPI to science and technology projects of the ROC (which may also be extended to the subsidy of the research and development in science and technology by the public sector of the ROC) will be presented, with consultation and recommendations for legislation. II. Analysis of the dialogue in the process of government procurement, scientific research subsidy, and scientific research procurement in the ROC (I) There is more than one tool within the ROC for the encouragement of research and development in science and technology Governments of different countries possess different policy tools to support or encourage the private sector in the research and development of science and technology in order to shore-up insufficient resources. From the perspective of government budgeting, the design of procedures may be identical or different. For example, the US federal government instituted the Federal Acquisition Regulation, FAR, and defined “acquisition” as “the acquiring by contract with appropriated funds of supplies or services (including construction) by and for the use of the Federal Government through purchase or lease, whether the supplies or services are already in existence or must be created, developed, demonstrated, or evaluated” 5. In light of the variation between its specific features and other services, Research and Development Contracting has been specifically regulated in section 35 of FAR, which states: “The primary purpose of contracted R&D programs is to advance scientific and technical knowledge and apply that knowledge to the extent necessary to achieve agency and national goals. Unlike contracts for supplies and services, most R&D contracts are directed toward objectives for which the work or methods cannot be precisely described in advance. It is difficult to judge the probabilities of success or required effort for technical approaches, some of which offer little or no early assurance of full success. The contracting process shall be used to encourage the best sources from the scientific and industrial community to become involved in the program and must provide an environment in which the work can be pursued with reasonable flexibility and minimum administrative burden. 6” In the EU, they defined research and development beyond government procurement regulation: According to Council Directive 92/50/EEC, or known as EU Directive, the scope of application as stated in paragraph (a) of article 1, “public service contracts shall mean contracts for pecuniary interest concluded in writing between a service suppliers and a contracting authority” with list of the exclusion conditions, where clause (ix) states: “research and development service contracts other than those where the benefits accrue exclusively to the contracting authority for its use in the conduct of its own affairs, on condition that the service supplied is wholly remunerated by the contracting authority. 7” As such, we can see the difference in legal requirements between the EU and USA. Whether such procurement is a special form of government procurement, or whether research and development falls beyond the regulation of government procurement procedure, it nonetheless falls under a government budget for the encouragement of technology research and development, and said research and development “cannot be forecast and not to be directly used by the procurement agency8 ”. Under the legal system of the ROC, it is a policy tool for the encouragement of research and development in science and technology, and could be classified as government procurement, scientific research subsidy, and scientific research procurement. For scientific research subsidy, Article 9 of the Industrial Innovation Statue of the ROC 9 provides the legal origin. For example, the technology projects administered by the Ministry of Economic Affairs have been established under this law. Accordingly, the Regulation Governing the Subsidy of Research Institutions in Industrial Innovation and Research and Development Advocated by Ministry of Economic Affairs (hereinafter, “institutional scientific project regulation”), the “Ministry of Economic Affairs Regulation Governing the Subsidy and Supervision for Assistance of Industrial Innovation (hereinafter, “Industrial Scientific Project Regulation”), and the “Regulation Governing the Subsidy of Academic Institutions in Industrial Innovation and Research and Development Advocated by Ministry of Economic Affairs (hereinafter, “Academic Scientific Project Regulation” for subsidizing research and development in industrial technologies10. The result of research and development shall be released to the administering body as required by Article 6 of the Fundamental Science and Technology Act 11. In the ROC, the result of science and technology projects shall be transferred to Ministry of Economic Affairs 12, which is similar to the requirement in the EU. This could be exemplified by the EU example as mentioned13 that the appointing agency is not entitled to any interest of the result. Government procurement is a vital policy tool of the government in subsidizing research and development. According to Article 2 of the Government Procurement Act 14, procurement as referred to in this law covers the outsourcing of service. Article 7 (paragraph 3) of the same law also requires that, service shall cover professional service, research and development. As such, the government will naturally adopt the means of government procurement in promoting its policy for encouragement of research and development in science and technology. Procurement is different from subsidy. The former entails an “inspection for acceptance” procedure, and the end users of the latter may not be the government. This point is different from the EU Directive in procurement 15. The third kind of tool in the ROC for the encouragement of research and development is scientific research procurement. According to Article 6 (paragraph 4 16) of the Fundamental Science and Technology Act, public schools, public research agencies (institutions), non-profit organizations or groups receiving a government subsidy or appointed by the government as stated in paragraph 1, or public research agencies (institutions) proceed to procurement by preparing a budget for research and development in science and technology under law. We could analyze this issue from three aspects: 1. Public schools, public research agencies (institutions), non-profit organizations or groups may receive government subsidy as stated in paragraph 1, Article 6 of the Fundamental Science and Technology Act for procurement; 2. Public schools, public research agencies (institutions), non-profit organizations or groups may proceed to procurement at the appointment of the government as stated in paragraph 1, Article 6 of the Fundamental Science and Technology Act for procurement; and 3. Public research agencies (institutions) proceed to procurement by preparing a budget for research and development in science and technology under the law 17. In detail, this specific mode of scientific research procurement has its origin in Article 4 of the Government Procurement Act. The cause of the legislation for this article, dated May 27 1998, specified that: “When non-profit organizations or groups receive government subsidy for procurement, and if the amount of subsidy exceeds half of the total amount of procurement and the amount of subsidy is subject to announcement, such procurement shall be governed by this article and subject to the monitoring of the subsidizing agencies to prevent misconduct and corruption”. As such, the recipients of subsidies shall be governed by the Government Procurement Act after passing through the due procedure of subsidy if the amount of procurement meets the standard for announcement. The purpose is to prevent misconduct and corruption. Or it would not be necessary for the government to intervene, given the subsidy has been supported by its legal source in the determination of the recipients and the procedure for entering into subsidy agreement. Indeed, this is the specific feature of the Government Procurement Act of the ROC. The same principle applies to scientific research procurement in the ROC (excluded from the application of Article 4 of the Government Procurement Act), and not the exclusion of the application of the Government Procurement Act to the subsidy procedure 18. (II) Analysis of the dialogue in the process of government procurement, scientific research subsidy, and scientific research procurement III. The dialogue of government procurement In government procurement, the regulations governing an invitation to tender and decision of award require that the party for the design of the content of procurement shall be the same party in the bidding process, to avoid alleged manipulation of the bidding process. For example, Article 39 of the Government Procurement Act (paragraph 2 and 3) requires that, “The deputy agent or partners of contractor undertaking the project management shall not be the deputy agent or partners in the planning, design, construction, or of the suppliers”. Article 38 of the Enforcement Rules of the Government Procurement Act requires that, “In tender invitation, the entity shall require explicitly in the tender invitation documents that if any of the following applies to a specific bidder, such bidder shall not participate in the bidding process, as the recipient of the award, or subcontractors of the award, or assisting the bidder: 1. The contractor that provides the planning and design service shall proceed to procurement on the basis of the planning and design result”. As such, the purpose of the Government Procurement Act aims at the impartiality and neutrality of the planning of project “to prevent funneling of interest, helping each other in manipulation of the bidding process, and the bidder also assumes the role of judge during the bidding process 19”. Indeed, there is still the possibility for hearing opinions from outside the procurement entity in the procurement cases under the Government Procurement Act. The government procurement system of the ROC could be seen as a system featuring a mechanism for dialogue. The “Particulars for Implementation of Public Viewing of Documents of Public Work Tender Invitation” 20 (hereinafter, Public Viewing Particulars) could serve as an example for the introduction of user needs dialogue. The Public Viewing Particulars require that the documents for public viewing shall include the schematics of the project, the sample version of contract, sample of affidavit, sample of important notice to bidding, bill of quantities and specifications, and other documents related to the specific characters of the projects (Number 3 of the Public Viewing Particulars). The purpose of viewing is an invitation for the opinions from the contractors or the public, which will be compiled and forwarded to the organizer of the project for processing before making an announcement for invitation to tender (Number 8 of the Public Viewing Particulars). As such, public opinions could be presented at this stage as a response to the content of the aforementioned documents in addition to the contractors. There is no delineated scope of public opinion, and could cover the objective content of the procurement. However, the type of projects subject to public viewing are of a specific nature or the amount of the engineering projects shall be subject to an audit (Number 2 of the Public Viewing Particulars), which excludes the procurement of research and development. In addition, the purpose of the Public Viewing Particulars is the transparency and openness of the tender invitation process for public work. Through the public viewing of tender invitation documents, the opinions from the contractors or the public can be heard. This can help to upgrade the quality of the planning and design of public works projects and reduce possible disputes deriving from tender invitations or performance of contract (Number 2 of the Public Viewing Particulars). As such, the purpose of this arrangement is not aimed at the necessity of the procurement of engineering projects. The possibility of applying the concept of PPI to this system of public viewing could be considered. If we think of the content for public viewing as including the schematics of the projects, the subject matter of the purchase is very substantive. In the future, it is expected that the objective of public viewing shall include subject matters that do not yet have a concrete plan, but still the opinions of the user and producer would be properly heard. 1. The dialogue of scientific research subsidy In the domain of scientific research subsidy of the ROC, the topics for subsidy are selected through the top-down mode. According to Article 7 of the institutional scientific project regulation, “The MOEA shall invite the experts from the industry, government agencies (institutions), academic and research institutions to meetings for strategic planning of industrial innovation and research and development, and consider the opinions from these social sectors to design for the direction of industrial innovation and research and development in the future”. Article 11 of the same regulation also requires that, “The MOEA may unleash the urgent industrial technology development plan on industrial technology that needs to be launched urgently as approved by MOEA or Executive Yuan”. As such, the law has already included the opinions and thoughts from the industry, government, and the academeia in designing of the recipient of subsidy. As compared with the measures adopted in Finland, this regulation is different, and the practice of Finland aims at obtaining suggestions during the course of “procurement”. Or, we could say that the introduction of the PPI concept in the subsidy mechanism could help to broaden the scope of the legal adjustment. Under the scientific project subsidy mechanism currently in effect, if we do not cut into the problem from the aforementioned mode of topic selection for subsidy, the cooperative education activities in the course of the execution of the subsidy plan are emphasized in the subsidy of scientific project for the institutions, academia, and industry 21. Further to the requirements of the regulation in principle, a variety of options could be used for integrating the needs of the industry in order to achieve the goal of the dialogue for “encouraging” research and development and the needs of the industry in practice. Individual agreements can help to achieve this goal. Currently, there are requirements specified in the notice to applicants for scientific projects within the field of academia, which feature detailed requirements for our analysis. We could take the prototype important notice to applicants (general academic scientific project) and the requirements therein commonly used in the development of industrial technology projects by the academic circle. To encouraging close cooperation between schools and the industry and research institutions, the source of funding for the projects shall be incorporated with the fees for supporting bodies with the requirements for the relevant proportion of funding on the basis of the domain of the subject matter of the project topic and the geographic location of the schools 22. If we take a closer look at the important notice of the application for a local academic development of an industrial technology project (local academic technology project), we could see that the system design features the needs of local industry. A local academic technology project is positioned for the upgrading of the research and development of specific technologies of local industries and the advocacy of regional industrial development with regional characteristics. As such, the items eligible for subsidy are innovative, prospective or critical technologies required by the industry, or modes of operation, corporate management skills or innovative service advantageous for industrial development 23. As such, the applicants must attach the letter of intent issued by at least three enterprises in the application procedure, and can prove that the objective of the project for subsidy is to a certain extent meeting the needs of local industry. 2. The dialogue of scientific research procurement For scientific research procurement, the “Regulations Governing Procurements for Scientific and Technological Research and Development” (hereinafter, “Monitoring Regulation”) instituted at the authorization of the Fundamental Science and Technology Act serves as the legal source for the entities or procurement authority to undertake scientific research procurement. The Monitoring Regulation aims at monitoring and management and also provides the legal environment for dialogue for scientific research procurement. This could be the starting point for scientific research procurement innovation. According to Article 7 of the Monitoring Regulation, “Where necessary, public schools, public research agencies (institutions), non-profit organizations or groups may proceed to consultation with the suppliers respecting the works for procurement, the specifications of properties or service needs before entering into agreement on scientific research procurement”. As such, the requirements under the Monitoring Regulations allow flexibility for the procurement authority in pursuing scientific research procurement, as they can engage in consultation with the ‘suppliers’. The topics for consultation covered the works for procurements, the specification of properties or service needs. There is one thing that needs to be differentiated, the mechanism of “consultation”, which is different from the consultation under the Government Procurement Act. Consultation as specified in the Government Procurement Act is a kind of supplementary measure applicable only when no decision of award can be made to the best bid 24, or it is difficult to determine the best bid 25. In addition, only the provisions contained in the original documents labeled as amendable could fall into the scope of consultation 26. As such, the subject matter of procurement specified in the tender invitation document shall be the fundamental requirement of the procurement case. In other words, the procurement authority has already known the purchase needs, which is different from the tentative IPP scheme of Finland. The latter aims at the encouragement for the participation of the suppliers of the service and the users in the process of determining the specification for procurement, and the terms and conditions of procurement, which is an immediate concern of the government for solutions and the development of the state to tackle challenges in the future. In other words, the IPP scheme of Finland aims at providing a solution for the procurement authority and the content of procurement is uncertain or is difficult to define due to the rapid change in the environment. (III) Concluding remarks─ the subject matter of dialogue under the concept of PPI and the possibility of preventing misconduct and corruption The study of this section leads to a preliminary conclusion that the legal framework of ROC for scientific research subsidy, government procurement, and scientific research procurement provides the mechanism for possible dialogues between the subsidy providers/procurement authority and the recipients of subsidy/bidders. Even the public viewing system of government procurement could incorporate the channels for public opinions. These could serve as the starting points for the introduction of PPI concept. Yet, there are two points to be clarified and resolved if we compare the aforementioned legal system and the PPI concept of the EU or the implementation of the IPP scheme in Finland if we are to introduce related practices First of all, if we elect to understand the aforementioned mechanism of government procurement and scientific research procurement from the perspective of dialogue/participation mechanism, the participants in the dialogues are still the subsidy providers or procurement authority and the service/goods suppliers. It is not a dialogue directly involving the users of public service (at this point, we could see the eventual purpose of the result of research and development as a form of public service). However, the spirit of the system currently in effect aims at matching the users for an indirect dialogue through this mode to a certain extent. For example, the integration of the academic scientific research project with the intent of the general and local participating firms as a necessary condition in the application, which approximates the mode of dialogue with the users of public service in the future. This arrangement is made in consideration that the firms and the market are the closest entities in the process, and is incorporated as a part of the user needs (of course, if we equate the two parties, there is the risk that the firms orchestrate market needs or making profits as the primary goal). Secondly, the gravity of the law in the ROC rests with the prevention of misconduct and corruption. This is particularly the case in the Government Procurement Act. Therefore, the foremost issue of introducing the concept of government procurement innovation to the ROC, that is the design of a system that features a mechanism for the prevention of misconduct and corruption to avoid “manipulation of the bidding process”, is yet to be resolved, and will be discussed later in this paper. IV. Analysis of the introduction of PPI into the laws governing scientific research subsidy, government procurement, and scientific research procurement (I) Suggestions and thoughts for the incorporation of PPI into the legal framework of government procurement Article 39 of the Government Procurement Act and Article 38 of its implementation procedure have set forth strict criteria for the prevention of “participants who also act as judges”. Yet, the so-called “contractors providing planning and design service” do not apply to all contractors that have provided planning suggestions but particularly point to the contractors that have been appointed by the entity to engage in the planning, design, or working on the preparation of tender invitation documents 27. In practice, the parties concerned tended to “keep a distance from” the prospective bidders in order to avoid inadvertent violation of the law. As such, there is an exception in law that excludes situations of no conflict of interest or no unfair competition 28. If we are to introduce the concept of PPI into government procurement of science and technology research and development, additional provisions must be added to the aforementioned law to provide explicit legal grounds for practice, before the entities can possibly or willingly introduce dialogue between the supplier and the user. As for the public viewing system in existence, it provides the possibility of a similar setting under the same spirit. As explained, the subject matter for receiving public opinions is still the content of the plan, which is different from the dialogue between the “supplier” and the “users’ being encouraged in the procurement planning stage under IPP in Finland. In summary, suggestions for introducing PPI to government procurement practice of the ROC within the legal framework are detailed below: First, the Government Procurement Act primarily aims at the prevention of misconduct and corruption. The introduction of the PPI concept entails higher cost of legislation, which requires amendment to the procurement act to provide the legal grounds. At the same time, the reconciliation with the rule of avoidance of the conflict of interest current practiced in procurement and the settlement of relate issues shall also be taken in account. Second, it could be possible to include the procurement of professional service or research and development in the Public Viewing Particulars in order to introduce the concept of PPI. In so doing, we must consider the entrance barrier on the procurement of engineering projects previously covered by the Public Viewing Particulars. This may be designed for avoiding the incurrence of additional administrative cost and bolstering administrative efficiency (for example, the procurement of engineering projects not exceeding specific amount, the addition of the requirement of public viewing, may delay the procurement procedure and hamper competition). For the outsourcing of professional services or research and development, appropriate consideration should be taken. (II) Suggestions and thoughts for the incorporation of PPI into the legal framework of scientific research subsidy The legal sources for governing scientific research subsidy are Article 7 and Article 11 of the institutional scientific project regulation, as in the case of the Ministry of Economic Affairs, and the important notice to applicants for general and local academic technology projects in their design. First, Article 7 of the institutional scientific project regulation requires that, Ministry of Economic Affairs shall invite experts from the industry, government agencies (institutions), academia and research institutions to the strategic planning of industrial innovation and research and development and consider the opinions from these experts in order to plan for the direction of industrial innovation and research and development in the future. The planning of the direction for innovation research and development could be included as an item for the development of industrial technology and should be the direction expected by all. For example, the Ministry of Economic Affairs has held the “National Industrial Development Conference” in December 2012, and opened to public opinions on four reformations in three industries on the advocacy of adding value to industrial innovation, structuring of positive investment environment, and other common topics. This is similar to PPI, which may include the absorption of and communication with the opinions of the “users”. But there is one point of variation. This is a matter of the use of planning strategy, and is the planning of the overall industrial technology development direction from top-down. In PPI, this will be the direct dialogue between the suppliers of service/properties and the end users in order to encourage the innovative solutions for the procurement. They may be at different levels. Second, the principle for the subsidy of general and local academic scientific projects requires the funding in proportion of the participating units or the letter of intent signed by the owners of at least three enterprises, which could be stated as the requirement of cooperative education programs. Article 12 of the institutional scientific project regulation, Article 8 of the academic scientific project regulation, and Article 4 of the industrial scientific project regulation have the provisions for encouraging cooperation education and could serve as the legal source for such a purpose. The pilot project of procurement in Finland adopted the dialogue between the prospective suppliers of service providers and the end users at the planning stage of procurement. This may be defying the principle of the procurement act. In the ROC, the subsidy procedure and the procurement procure are governed by different sets of laws. As such, the restriction of the Government Procurement Act does not exist in the legal rules governing the subsidy procedure. As such, there is little concern over the violation of the law. However, we have to pay attention to Article 6 of the Fundamental Science and Technology Act 29 on the issue of the avoidance of interest in the entitlement and use of the result of scientific research under government subsidy, at the appointment of or funded by the government. In other words, the legal rules governing subsidy have not restricted the possibility of dialogue between the “supplier” and “end users” of the science technology research and development project at the preliminary planning stage. The substantive terms of requirement are stated in Article 12-1 of the “Ministry of Economic Affairs Regulation Governing the Entitlement and Use of The Result of Science and Technology Research and Development”, the procurement authority shall establish the management mechanism or regulations, or report to the Ministry for record on the avoidance of the conflict of interest or related disclosure of the result of research and development. Attention is required for possible violation against related requirements of the avoidance of the conflict of interest and disclosure of the procurement authority. But if we take a closer look at the Fundamental Science and Technology Act in the aspect of the avoidance of the conflict of interest, and compare with the dialogue between the procurer and the users at the planning stage, there may be room for legality. It is because the Fundamental Science and Technology Act requires only the entitlement and use of the result of research and development, which is the output of the project, and not the avoidance of the conflict of interest at the planning stage and implementation stage. This is the difference in the substance. Even though there is no dialogue after the outcome of the project, the performer may still have a conflict of interest under certain circumstances, which should also be considered. For example, the procurement authority declares its position on the opinions presented at the planning stage is indeed the suggestion of the result of research and development of the only party that has the technical capacity in the technology market that can undertake the research and development. In summary, suggestions for introducing PPI to government scientific research subsidy projects in the ROC within the legal framework are detailed below: First, we could incorporate relevant dialogue mechanisms at the project planning stage, in a timely fashion and in accordance with the requirements for encouraging cooperative education within the legal framework of scientific research subsidy administered by the Ministry of Economic Affairs currently in effect. Second, legal rules governing scientific research subsidy administered by the Ministry of Economic Affairs currently in effect do not restrict any dialogue between the recipient of subsidy (the so-called “supplier”) and the “end user” at the planning stage or in the future, but whether or not such an act will violate the requirements of relevant procurement authority in the avoidance of conflict of interest, deserves our attention. (III) Suggestions and thoughts for the incorporation of PPI into the legal framework scientific research procurement In the domain of scientific project procurement, Article 7 of the Monitoring Regulation sets forth that suppliers may involved in consultation on issues related to the works for procurement, specification of properties, or service needs. This provides the legal source for the trial use of the IPP scheme of Finland in the ROC, but we have to consider two things. First, the provision sets for the consultation with the supplier only, and it is, by and large, the dialogue mechanism only after the determination of the subject matter of procurement, which is different from the IPP of Finland. Also, the dialogue with the end user does not fall within the scope of such legal source, and, there is still room to define who could be positioned as the “end user”. Yet, it is two sides of the same coin. There is a legal framework in place without detailed requirement. As such, the procurement authority may design the procedure in fuller detail in this space as needed. Finally, the scope of scientific research procurement in the ROC is not as broad as the subsidy cases (refer to the definition of scientific research procurement above). As such, the majority of scientific research procurement is already at the cooperative education stage under individual subsidy or appointment of the government (except the work under the scientific research and development budget prepared by the public research institutions). If we introduce the concept of PPI into the scientific research procurement stage, the content and the scope have already fallen into the framework of the previous subsidy plan, and there is little room for the incorporation of dialogue and opinions. In summary, the suggestions for introducing PPI to scientific research procurement of the ROC within the legal framework are detailed below: First, the Monitoring Regulation of scientific research procurement provides the mechanism for consultation but does not define the subject matter of consultation in procurement. As such, the scope for hearing opinions is limited. Further, the dialogue with the users has not been covered. The overall implementation procedure requires refinement for proper enforcement. Second, the scope of scientific research procurement is limited to the procurement under an individual subsidy program or at the appointment of the government, and falls within the scope of the content for the previous subsidy program or the program at the appointment of the government in principle. As such, the effect of introducing PPI is limited. V. Conclusion – A Discussion on Introducing the PPI into Science and Technology Projects and Suggestions for Legislation within the ROC The above are overall observations on the analysis of the introduction of PPI to scientific research subsidy, government procurement, and scientific research procurement in the ROC. In the “Issue of dialogue for innovation”, we should consider to start with scientific research subsidy. The primary reason is that there is room within the legal framework under the Monitoring Regulations governing scientific research procurement, but in practice, more substantive terms could be developed. However, the scope of the legal framework for the applicability of scientific research procurement is confined to the procurement made under subsidy or at the appointment of the government on specific programs. The effect of trial running PPI is very little under the framework of subsidy or appointment by the government. Finally, the feasibility of introducing PPI to the scientific research projects of the ROC, which is the “subsidy innovation issue”, is analyzed below: First, the legality of using scientific development fund to subsidize other government agencies: Article 5 of the “National Science and Technology Development Fund Management and Utilization Regulation of Executive Yuan” sets forth the use of the fund, including “expenditure on the advocacy of overall technology development of the nation”, “expenditure on the improvement of the research and development environment for science and technology”. As such, the introduction of the trial run of IPP schemes in Finland would comply with the aforementioned provisions. Second, the legality of subsidizing the public sector by advocating science and technology research and development, like the Department of Industrial Technology at the Ministry of Economic Affairs in the future: reference could be taken from Article 9 of the Ministry of Economic and Energy Affairs Articles of Association (Draft) under which the Department of Industrial Technology shall administer, “1. Strategic planning and implementation in technology under the jurisdiction of the ministry”, and the “planning of technology funding resources, and the establishment of implementation system and evaluation system”. As such, the model of the IPP scheme of Finland is not compatible with the authority and function of the Department of Industrial Technology. In other words, the Department of Industrial Technology shall not perform the function of subsidizing/advocating the duties of procurement innovation of other government agencies, but can introduce the concept of PPI for trial running within its scope of legal framework (e.g., scientific research procurement). Third, the issue of outsourcing for survey of market needs by the public sector on the applicability of the Monitoring Regulation. If the work for outsourcing is an item of work under previous subsidy or work at the appointment of the government, and the fund of the project for procurement is regulated by the Monitoring Regulations. However, for survey of market needs purely planned for subsidy by the entity or required by the procurement cases, they fall within the category of general procurement of service and the Government Procurement Act shall be applicable. In sum, the PPI concept under the FP7 of the EU has been subject to trial run through the IPP scheme of Finland. In Finland, the evaluation mechanism has not yet been fully established. Yet, such attempt to provide a solution for specific subject matter of procurement for the country that faces the rapid changing objective environment through the absorption of dialogue and opinions for innovative solutions is new in the world, and could be considered for adoption within the ROC that has similar challenges in the objective environment. As such, we could start with scientific research procurement. The evaluation of the result is promising; this could be incorporated into the design of the mechanism for scientific research subsidy. For the scope governed by the Government Procurement Act, it entails high cost for amendment, and should be left a subsequent choice for review and planning. 1.TEKES Homepage, http://www.tekes.fi/en/community/Home/351/Home/473 (last visited June 15, 2013). 2.The IPP scheme is the response of Finland to FP7 of the EU in proposing the Public Procurement of Innovative Solutions, PPI. In this paper, PPI and IPP share the same concept while the latter is the substantive name of the pilot project in Finland. See Huang Huei-Hsiang, “International Practice and Legal Analysis of the Advocacy of Government Procurement Innovation – a case study on IPP of TEKES, Finland”, Science and Technology Law Review, Vol. 25 No. 10. PP. 27-45 (2013), by. 3.Pre-commercial procurement, PCP, is the procurement of the government for creating a market and appeals mainly to the service supplier with emphasis the difference from the dialogue between the users and the suppliers. 4.Article 1 of the Government Procurement Act, “This law is instituted for the establishment of a government procurement system to the extent of setting up a fair and transparent procurement procedure, upgrade the efficiency and function of procurement, and guarantee the quality of procurement”. Although this law is instituted for achieving the objective of upgrading procurement efficiency and function, and guarantee of procurement quality, the procedure of the Government Procurement Act aims at keeping distance with the prospective contractors in the procurement process to avoid possible allegation of manipulation of the bidding process, monopoly of the tender, and profit seeking. 5.Federal Acquisition Regulation 2.101, “Acquisition’ means the acquiring by contract with appropriated funds of supplies or services (including construction) by and for the use of the Federal Government through purchase or lease, whether the supplies or services are already in existence or must be created, developed, demonstrated, and evaluated.” FAR Home Page, https://www.acquisition.gov/far/current/html/Subpart%202_1.html#wp1145507 (last visited June 15, 2013). 6.Federal Acquisition Regulation 35.002, “The primary purpose of contracted R&D programs is to advance scientific and technical knowledge and apply that knowledge to the extent necessary to achieve agency and national goals. Unlike contracts for supplies and services, most R&D contracts are directed toward objectives for which the work or methods cannot be precisely described in advance. It is difficult to judge the probabilities of success or required effort for technical approaches, some of which offer little or no early assurance of full success. The contracting process shall be used to encourage the best sources from the scientific and industrial community to become involved in the program and must provide an environment in which the work can be pursued with reasonable flexibility and minimum administrative burden.” FAR Home Page, https://www.acquisition.gov/far/current/html/FARTOCP35.html#wp223483 (last visited June 15, 2013). 7.“For the purposes of this Directive: (a) public service contracts shall mean contracts for pecuniary interest concluded in writing between a service provider and a contracting authority, to the exclusion of:…(ix) research and development service contracts other than those where the benefits accrue exclusively to the contracting authority for its use in the conduct of its own affairs, on condition that the service provided is wholly remunerated by the contracting authority;” Council Directive 92/50/EEC, art. 1, 1992 O.J. (L 209) 1,3. 8.In “Critique of Scientific Research Procurement after the Amendment to Article VI of the Fundamental Science and Technology Act ”, in Science and Technology Law, Vol. 24, No. 10, PP, 29-32 (2012), by Chen Shih-Chieh. 9.Article 9 of the Industrial Innovation Statue, “Competent authorities at the central government may advocate the following in the form of subsidy or supervision: I. Encouragement of industrial innovation or research and development. II. Supply or industrial technology and supervision of industrial upgrading. III. Encouragement for the establishment of innovation or research and development center in the enterprises. IV. Assistance in the establishment of innovation or research and development institutions. V. Encouragement of cooperation among the industry, academic circle, and research institutions. VI. Encouragement of the input to schools by enterprises for the training and development of talents. VII. Augmentation of human resources in the industry. VIII. Assistance in the innovation of regional industries. IX. Any others that help to encourage industrial innovation or research and development. The recipients of the aforementioned subsidy or supervision, the qualification requirements, criteria for screening, application procedure, authority for approval, and other related rules and regulation shall be established by respective competent authority of the central government”. 10.For example, Article 4 of the academic scientific project regulation, “The MOEA shall subsidize academic institutions to perform the following research and development for the advocacy of industrial development and reinforcement of innovation capacity for the country…” 11.Article 6 of the Fundamental Science and Technology Act , “The parties for awarding science and technology research and development subsidized, appointed, funded by the government, or under a budget prepared by public research agencies (institutions) on science and technology research and development shall be determined by evaluation or review process with justifiable reasons for the evaluation and review. The resulting intellectual property rights and result in whole or in part shall be entitled to the pursuer of research and development or authorization for use irrespective of the restriction of state-owned properties”. 12.Article 6 of the Ministry of Economic Affairs Regulation Governing the Entitlement and Utilization of Science and Technology Research and Development Result, “The result of science and technology project of the pursuer shall be entitled to the pursuer unless otherwise specified in This Regulation”. 13.In the EU, the provision of “The procurement authority shall be responsible for all the expenses incurred from the service supply and the benefit so generated shall be owned by the procurement authority for its needs in operation” served as an exception of contracted service of research and development. In other words, the interpretation is inversely made to the extent that contracted service of research and development in the EU is not entitled to the procurement authority. 14.Article 2 of the Government Procurement Act, “Procurement as referred in this law shall be job order for work, the purchase, making to order, leasing of properties and the contract for service or employment”. Article 7 of the same law, “Work as referred to in this law shall be act of building, addition, renovation, remodeling, demolition of structures and equipment accessory to the structures above and below ground level, and the act to change the natural environment, including building, civil engineering Hydraulic engineering, water work, environment, transportation, machinery, electric, chemical engineering and any other engineering project recognized by the competent authority. Properties as referred to in this law are items(except fresh agricultural or aquacultural products), materials, equipment, machinery and other movables, real properties, rights, and other properties recognized by the competent authority. Service as referred to in this law shall be professional service, technical service, information service, research and development, corporate management, repair and maintenance, training, labor, and other forms of service recognized by the competent authority. Where the procurement may involve two or more of the aforementioned content, which made it difficult to identify the very nature, the content accounted for a larger proportion of the budget for total work shall stand”. 15.Op. Cit, Note 13. 16.Article 6 – Paragraph 4 of the Fundamental Science and Technology Act , “the Government Procurement Act shall not be applicable to public schools, public research agencies (institutions), non-profit organizations or groups receiving government subsidy or assignment, or procurement of public research agencies (institutions) under a budget of science and technology research and development prepared in compliance with applicable law unless otherwise specified in a treaty or agreement binding the ROC and a third country. Yet, they are subject to the monitoring of the subsidizing, assigning, or the competent authority. The regulation for monitoring and management shall be established by the competent authority in the central government”. 17.Op. Cit. Note 8, PP36-37. 18.Table of “Research and Development Projects” governed by the “Government Procurement Act” under Public Construction Commission, Executive Yuan Letter Chi-Tzi No. 89009844. The Government Procurement Act shall not be applicable to the selection of the recipients of subsidy. 19.The cause of legislation for Article 39 of the Government Procurement Act dated May 27 2998, “II. Paragraph II and III explicitly state that contractors may act on behalf of the entity in project management, and shall be in specific relation with the contractors responsible for the planning, design, construction of the project to avoid funneling of interest, cover up each other, and acting as a participant and the judge at the same time”. 20.Particulars for Public Viewing of Tender Invitation Documents of Public Works, at http://lawweb.pcc.gov.tw/LawContentDetails.aspx?id=FL029347&KeyWordHL=&StyleType=1 (last browsing date: 2013/6/15) 21.Article 12 of the Regulation Governing the Subsidy of Research Institutions in Industrial Innovation and Research and Development Advocated by the Ministry of Economic Affairs, “The MOEA or its functionaries shall encourage research institutions to introduce technologies, joint ventures in the development and participation in the pursuit of technology projects through interdisciplinary or cross-function cooperation for the effective integration of domestic and foreign research and development resources and capacity, the assistance of the upgrading of traditional industries, or advocacy of the development of knowledge service for the best interest of the industry”. Article 8 of the Regulation Governing the Subsidy of Academic Institutions in Industrial Innovation and Research and Development Advocated by the Ministry of Economic Affairs , “The MOEA shall request the applicants of academic technology projects to invite the joint participation of research institutions or companies and execute the academic technology project in interdisciplinary or cross-function mode of operation for the effective integration of research and development resources and capacities at home and abroad and create the optimized result in industry”. Article 4 of the Ministry of Economic Affairs Regulation Governing the Subsidy and Supervision for Assistance of Industrial Innovation, “The MOEA or its functionaries may provide subsidy for the following industrial innovative activities:… IV. Encouragement for joint venture among the industry, academia, and research institutions”. 22.Refer to important notice of application for general type of projects, IV. Types of subsidies for general academic scientific research projects. 23.Refer to important notice of application for local type of projects, III. The positioning, nature, and subsidy for local academic scientific research projects. 24.Article 55 of the Government Procurement Act, “Entities taking minimum offer for procurement and have been approved by the senior authority and announced in the notice of tender and the tender invitation documents and cannot determine the award pursuant to the requirements or preceding two articles may proceed to consultation”. 25.Article 56 of the Government Procurement Act, “ …if the evaluation result cannot determine the best bid on the basis of the decision of the head of entity or more than half of the members of the evaluation committee, proceed to consultation and comprehensive evaluation for determining the best bid”. 26.Article 57 of the Government Procurement Act, “Entity elects to proceed to consultation in accordance to the requirements specified in the previous two articles shall comply with the following principles: … III. The content of the original tender invitation documents to be revised shall be highlighted before proceeding to consultation”. 27.Paragraph 1, Article 39 of the Government Procurement Act, “Entities may assign the duties of project management in planning, design, supply, or performance of contract to a contractor in procurement under this law when making procurement”. 28.Paragraph 2, Article 38 of the Government Procurement Act Implementation Procedure, “Subsequent procurement procedure shall not be applicable to situations specified in I and II of the previous section if there is no alleged conflict of interest or unfair competition and at the approval of the entity”. 29.Paragraph 3, Article 6 of Fundamental Science and Technology Act , “The Executive Yuan shall coordinate and regulate the entitlement and utilization of the intellectual property right and result as mentioned in preceding two sections under the principle of equity and effectiveness, with reference to the proportion and contribution of capital and service, the nature, potential of utilization, social benefit, national security and the effect on the market of the result of science and technology research and development, and on the basis of its purpose, necessary condition, duration, scope, proportion in whole or in part, registration, management, distribution of incomes, avoidance of conflict of interest and the disclosure of related information, the intervention of the subsidizing agent in authorization of a third party, or procedure for nationalization. Respective competent authority at different level shall establish relevant legal rules for such purpose”.

TOP