The Introduction to the Trade Secret Management System Standard

The Introduction to the Trade Secret Management System Standard

2024/02/06

The “Trade Secret Management System”, released by the Science & Technology Law Institute of Institute for Information Industry on March 1, 2023, is a standard to guide organizations developing a systematic trade secret management system in alignment with relevant regulations and their operation objectives. Its aim is to assist the organizations reducing the risks of trade secret leakage while improving organizational competitive advantages.

 

The Trade Secret Management System standard provides a framework for organizations to design, implement, and continuously improve their trade secret management performance. As defined in Article 2 of the Trade Secrets Act, "trade secret" could be any method, technique, process, formula, program, design, or other information that may be used in the course of production, sales, or operations, meeting following requirements:

 

1. It is not known to persons generally involved in the information of this type;
2. It has economic value, actual or potential, due to its secretive nature; and
3. Its owner has taken reasonable measures to maintain its secrecy.

 

The Trade Secret Management System standard comprises a total of 10 chapters. The following is a brief overview of each chapter:

 

Chapter 1: This chapter indicates the standard is applicable to all organizations regardless of their types, sizes, and the products or services they provide. It mentions that the organization can determine their management approached to meet the requirements of the standard.

Chapter 2: This chapter provides the definitions of specific terms used in the standard.

Chapter 3: This chapter introduces the top management’s responsibility to ensure the establishment, continuous appropriateness, completeness, and effectiveness of the trade secret management system.

Chapter 4: This chapter requires the organization to define the scope of its trade secrets and ensure the defined trade secrets can be identified. This chapter also requires organization set up the permission to restrict access to personnel who need to know or use the trade secrets.

Chapter 5: This chapter introduces the organization shall control the use of trade secrets, including actions such as copying, destruction, etc. Additionally, organization shall preserve the records of the aforementioned use of trade secrets and detect if any abnormal usage exists.

Chapter 6: This chapter discusses measures the organization shall take for internal personnel control. These measures include regular training on trade secret-related requirements, signing of confidentiality agreements, and various management actions the organization should take throughout the processes of personnel recruitment, employment, and departure.

Chapter 7: This chapter demonstrates the organization’s management of environments, equipment and internet involving its trade secrets. It requires the implementation of access control measures for places where trade secrets are stored or processed. It also stipulates controls on the use of record media and devices which can access trade secrets, as well as controlling the transmission of trade secrets via network.

Chapter 8: This chapter introduces the management measures the organization shall take when interacting with other parties. These measures include signing non-disclosure agreement (NDAs) with the party who will access trade secrets and requiring such party not to hold the trade secrets once the corporation ends.

Chapter 9: This chapter introduces that the organization shall establish a trade secret dispute resolution procedure to prevent or mitigate damages to the organization caused by disputes.

Chapter10: This chapter outlines the supervision and the improvement of the trade secret management system of the organization.

 

Organizations can follow the standard to build their own trade secret management system based on the Plan-Do-Check-Act (PDCA) concept. The trade secret management system would include defining trade secrets to be managed, establishing protocols for the use of trade secrets, managing employees, controlling of internet, devices and environment related to trade secrets, regulating external activities, developing trade secret dispute resolution procedure, and regularly monitoring the effectiveness to improve trade secret management performance. This standard could serve as a benchmark for the organization or third parties to evaluate compliance with expected trade secret managements.

※The Introduction to the Trade Secret Management System Standard,STLI, https://stli.iii.org.tw/en/article-detail.aspx?no=105&tp=2&i=171&d=9123 (Date:2025/05/17)
Quote this paper
You may be interested
Yearly Update on the Progress of the TIPS Project – summary of a research report on corporate investors’ view on introducing a corporate IP disclosure framework

Chien-Shan Chiu Background In the era where inventions drive the economy, the ability to create, capture and protect these inventive ideas has become vital for a corporation to stay competitive and sustain profit growth. Various government policies have been implemented in order to stimulate inventions and to strengthen the ability to protect these inventions through effective use of intellectual property (“IP”) rights. For the past few years, the TIPS (Taiwan Intellectual Property Management System) project has been promoted extensively aiming to increase public awareness towards IP rights and to assist local companies to establish a systematic and comprehensive IP management system. Over the years, the TIPS project has received wide recognition and positive feedbacks, and many TIPS-implemented companies are ready for the next challenges. After an extensive research, the project proposes to follow the international trend of encouraging companies to make better and more disclosure of intangible assets that are not often shown in the traditional financial statements1 . Local companies with effective IP management system and strategy are encouraged to compile an “Intellectual Property Management Report” summarizing its business, R&D and IP management strategies as well as their accumulated IP assets. In order to compile an Intellectual Property Management Report, a company is advised to re-identify its intellectual property, re-think about its strength and weakness in every aspect and where necessary, the company may also need to re-conduct a market, technology trend or competitor’s analysis, through which it is believed that a better and more effective IP strategy will be re-formulated. Formulating a well-planned corporate strategy that takes into account various IP issues is one of the main reasons for introducing the corporate IP disclosure framework. Promoting the disclosure of IP-related information so that the management efforts, visions and true capabilities of a corporation can be fully disclosed and recognized is the second major reasons for introducing the corporate IP disclosure framework. This essay begins with a brief update on the yearly progress of the TIPS project, follows by a summary of the research report on corporate investors’ view on initiating a framework for enhancing disclosure of corporate IP-related information. The research report contains the result of a survey conducted between April and June this year (year 2009), consisting questions to uncover local investors’ view and attitudes towards corporate IP, and to identify kinds of IP-related information required when making an investment decision as well as to find out to what extend local investors would support the government’s initiative on promoting a corporate IP disclosure framework. Update on the Yearly Progress of the TIPS Project In order to facilitate the promotion of TIPS, several supplementary services have been introduced (fees and expenses are fully or partially subsidized by the government this year) : (1) Free On-Line Self-Assessment Tool; (2) On-Site Diagnostic and Consulting Service (selected companies were fully subsidized); (3) “Demonstrative” Model Companies (selected companies were partially subsidized); (4) IP Management Courses (partially subsidized); (5) On-Site Auditing (for the Conformance of TIPS requirements) and issuing of the TIPS Compliance Certification (fully subsidized) . To the end of 2009, 401enterprises have completed the on-line self-assessment questions; 93 companies have received on-site diagnostic and consultation services; 847 persons have taken the IP management courses; 64 enterprises have successfully obtained the certificates for the compliance of TIPS and more than 299 enterprises have either completed or in the middle of implementing TIPS. Summary of the Research Report on Corporate Investor s’ View on Introducing a Corporate IP Disclosure Framework Even though it is clear that the idea of encouraging corporations to disclose non-financial information has started few decades ago in Europe and are currently being vigorously promoted by many major countries, we believe that in order to facilitate smooth promotion of the new IP disclosure framework, it is important to find out the local investors’ views and attitudes towards IP and to know how investors see the role of IP can play in a local corporation. Hence a survey was conducted at the initial stage of preparing the new corporate IP disclosure framework in Taiwan. The survey was sent via both mails and emails to 357 corporations, including venture capital firms; trust, investment consulting or management firms; security corporations, financial institutions and banks. More than one set of survey questionnaires could be distributed in one corporation to be filled by investors/analysts that are specialized in investing different industrial sectors. As a result, a total of 495 set of questionnaires were distributed.. Basic Data The survey was conducted between April to June 2009. At the end of June, a total of 150 investors/analysts responded which equals to a 33% response rate. Most of the survey respondents specialized in investing in various industrial sectors which include: semi-conductor; telecommunication; electronic components; 3C products; IT; optical; biotechnology; pharmaceuticals; new energy resources; media; creative and culture and traditional manufacturing industries. Around 50% of the survey respondents have more than 5 years’ experience in investment; among them, 23% of the survey respondents have more than 10 years’ investment experience. Investors recognize the importance of IP A remarkable 94% of the survey respondents recognized that the ability to create, protect, manage and exploit IP has become an essential element for a company to stay competitive and sustain growth in today’s market environment. 88% of the survey respondents believe that companies with more or better IP assets are more likely to generate profits and 91% believe that such companies are more likely to survive in this ever-increasing competitive environment. Yet, 94% of the survey respondents agreed that not only a company should actively create IP assets, but the ability to exploit and thus extract value from the accumulated IP assets is what makes a company stand out among the others. Taking a step further, the survey result reveals that the respondent investors believe a company with effective and well-planned IP strategy is likely to: – Enhance its market competitiveness (84%); – Raise its overall corporate value (71%); – Maintain its market position (55%); – Increase its profitability (32%); – Affect its share price (30%); – Assist investors in evaluating such company’s managerial ability and performance (29%) as well as evaluating its future growth potential (28%). IP-related information influences investors’ investment decisions Given that most investors see the ability to create, manage and exploit IP assets as well as having a well-planned IP strategy are crucial for the survival of a company, 82% of the survey respondents indicate that IP-related information has been considered when making an investment decision. Furthermore, 85% of the survey respondents think that they will place greater emphasis on IP in assessing companies in the future. Indicators that used to assess/evaluate a company Most often used IP-related indicators identified by the survey respondents when making investment decisions are: – Core technology and its market competitiveness (77%) – Research ability (experience and achievement) (73%) – IP protection and management measures (41%) – IP strategy (align with overall corporate strategy and market/technology characteristics) (40%) – Ability to fully utilize self-owned IP assets (38%) – R&D expenditure and investment (35%) – No. of IP assets (35%) – Time taken for competing products to enter into the market (33%) – Cost of maintaining IP assets (19%) Ratio of intangible assets as to the overall corporate value (19%) : 20% of the survey respondents indicated that they have turned down investment in the past for inadequate IP awareness of the target companies. List of local companies with good and effective IP strategy The survey respondents were asked to name local Taiwanese companies which in their mind have most effective and sound IP strategy. Taiwan Semiconductor Manufacturing Company (TSMC), Foxconn, United Microelectrc (UMC), HTC, Acer are the top 5 most named companies given by the survey respondents. Having good quality of patents (such as essential or new technology patents); detailed and complete patent map; sound IP strategy; brand and professional IP/legal department are cited as the reasons that impress these investors. Inadequacy of public available IP-related information While most investors acknowledge the importance of IP and take into account various IP-related indicators when making investment decisions, 76% of the survey respondents expressed that currently, the amount of IP-related information disclosed by companies are not sufficient for them to make an informed investment decision. When a question asking the survey respondents to identify the channels by which they obtained their desired IP-related information, the results were quite spread out. 45% of the survey respondents relied on asking the top managers directly; 43% relied on annual report; media and news (35%); website (34%); industrial journals (25%); competitors (15%) and other private channels (15%). It appears that various sources were used but no particular source provides sufficient information. Indeed, a remarkable 91% of the survey respondents believe that if there are more channels provided for corporations to disclose their internal IP information, more accurate assessment of the corporate value can be made. Support government’s initiative of promoting IP reporting framework Further, 73% of the survey respondents expressed their willingness to support the government’ s initiative of encouraging local companies to disclose their IP-related information. In relation to the initiation and promotion of the corporate IP disclosure framework, 64% of the survey respondents responded that it would be better to adopt a voluntarily disclosure policy and decide whether to switch to mandatory disclosure later; 22% think that only a voluntarily disclosure policy should be adopted followed by 14% of the survey respondents who believe that the government should adopt a mandatory disclosure policy from the start. When the survey respondents were asked to provide suggestions to facilitate the promotion of the corporate IP disclosure framework, the following suggestions were picked by the survey respondents: – Provide valuation tools to assist investors in assessing and analyzing IP related information (40%); – a central platform to collect and display all the complied IP management reports (21%); – lists of compulsory items to be disclosed in the report (21%); and – regulate the frequency of updating the contents of the report (15%). Conclusion Based on the results of the survey, we can conclude that the local investors’ view and attitude towards IP are similar to those in overseas. Majority of the investors (> 90%) see IP as valuable tools that could assist companies to create profits and sustain growth in today’s competitive market. While most of the investors (82%) have taken into account relevant IP information when making investment decisions, 76% of the survey respondents expressed that the amount of corporate IP-related information disclosed by companies are insufficient for them to make informed investment decisions. This is an important message that local companies should pay particular attention. It is hoped that through the introduction of the corporate IP disclosure framework, more adequate corporate IP information will be disclosed to assist investors in making better and accurate investment decisions. Consequently, a company’s true capabilities, managerial efforts and the intangible assets created upon can thus be fully appreciated and reflected on its market value. 1 Various national and institutional initiatives addressing the disclosure of corporate intellectual assets are currently being promoted vigorously at the international level such as Japan’s “IA based Management Report, (METI)”; Denmark’s “Intellectual Capital Statement (MSTI)”; European Union’s “Guidelines on Intangibles, MERITUM project”; U.S.’s “EBR 2.0 (Enhance Business Reporting Consortium)”; and The World Intellectual Capital/Assets Initiative (WICI) is currently working on developing a voluntary global framework for measuring and reporting corporate performance.

Copyright Ownership for Outputs by Artificial Intelligence

Copyright Ownership for Outputs by Artificial Intelligence One. Introduction I. From Machine Learning to Deep Learning, AI is Thinking   The famous philosopher, mathematician and physicist René Descartes from France in the 17th century said: “Cogito ergo sum”. This is considered a radical skepticism in the context of philosophy. When a philosopher raises the question that how one person can be sure of his/her existence, it is not about the feeling, cognition or experience with the world. Rather, it is about thinking.   Artificial intelligence works like interconnected human neurons, with the logics and algorithms built with codes and processed with high speed. The nutrient it requires is the massive amount of data. In the past, artificial intelligence only works according to the logical setup and instructions from developers. In the era of machine learning today, humans have empowered machines with the capability of processing. This is achieved not by writing comprehensive and exhaustive rules. Rather, it is by making machines able to figure out rules on their own. In other words, all we need to do is to prepare data. Machines can be trained to think and judge. Artificial intelligence will eventually generate its outputs and start to create contents.   Image recognition is a good illustration of how machine learning works, as part of the wider AI. The identification of cats is a classic example. A large number of pictures and photos of cats are provided, with descriptions of features to train machines. The purpose is to train machines into building their own criteria as to what cats are about. According to the Proceedings of the Seventh IEEE International Conference on Computer Vision in 1999, image recognition is processed with the technology similar with neurons for visual recognition by primates[1].   Twenty years on, machine learning (as part of artificial intelligence) has come a long way. The number of neural network models, built on neurons, has grown exponentially[2]. Deep learning has been developed with layers of neurons. There are links only between neighbouring layers to reduce the number of variables and enhance the speed of computing. In the context of machine learning, learning is about the selection of an optimal solution from multiple variables[3]. Big data is fed into the man-made neural networks constructed in the computers so that they are constantly trained and learning. Hung-yi Lee[4], a scholar specialized in artificial intelligence in Taiwan, provides a simple analogy for this technology. Machine learning is like a human brain with one layer of neurons; whilst deep learning works with many neurons and hence can learn on their own, make judgement and establish logics[5]. In other words, artificial intelligence is capable of analysing, identifying and decision-making on its own, and human is becoming less relevant in this process. Artificial intelligence is able to think. This is not only a factual description, but also a trigger to fundamentally change the legal institution of nations. II. Who Owns the Outputs Generated with Thinking?   Over the long run, whether the legal institution and the society are ready to give artificial intelligence “quasi” right of personality is a topic worth exploring. In the immediate term, what normative models should be used to define the ownership of copyrights for the outputs and creations by artificial intelligence?   The decision on copyright ownership has always been a hot topic in the field of intellectual property. The legal system in the U.S. describes the protected entity for copyright as “the fruits of the intellectual labor”. Article 798 of the Civil Code in Taiwan says, “Fruits that fall naturally on an adjacent land are deemed to belong to the owner of such land, except if it is a land for public use”. The fruit, i.e. outputs generated by artificial intelligence, also falls into the society of rules governed by rights and obligations. Of course, it is necessary to first define and regulate the entity that owns the rights. This begs many fundamental questions in the context of copyright laws. Who owns the rights? The developers (perhaps on a pro-rata basis), data owners, or the companies that provide infrastructure to developers? Once the boundary of imagination and reality is pushed further, the ownership of rights is no longer limited to human creators and may be extended to artificial intelligence. Moreover, it is possible for governments to insist that copyrights are only for human creations and the intellectual property created by artificial intelligence may fall into the public domain and hence fall unprotected legally, given the significance of public interest involved.   This paper explores the copyright ownership for the outputs generated by artificial intelligence by systemically observing the real-life cases in the industry. This is followed with an analysis on the perspectives from the European Union, the United Kingdom and the United States. The purpose is to examine the contexts and normative models of artificial intelligence and copyrights and finally develop a preliminary framework for the regulation of artificial intelligence now and the future. Two. Creativity Capability of Artificial Intelligence Is a Reality   With artificial intelligence and Big Data driving the development of industries, the exploration with the construction and normative models of the legal system should start with the reflection of social values, so as to achieve the purpose of social order with laws and regulations.   The construction of the legal system for technology should be anchored on the observation of facts, given the rapid advancement and evolution of emerging technologies. The fact today is that artificial intelligence is being used for art creations such as musical composition, poetry and painting. Developers train artificial intelligence with massive data and enable deep learning to grasp the essence of artworks in order to generate outputs. Whether the ultimate purpose is commercial profitability or not, most of these outputs have reached a certain level of quality. Below is a brief introduction of creative techniques and new business models of artificial intelligence in music composition, poetry writing, painting and news writing. I. Original Music Generated with Deep Learning: Fast and User-friendly   The vibrant development of the Internet has created an online celebrity economy. Youtubers, Internet personalities, cyberstars, Wanghong (or internet fame in Mandarin) produce films or release podcasts to attract the audience for direct/indirect and commercial/non-profit-seeking purposes. The production of such films and live broadcasting, or the creation of original online or PC games creates the demand for background music or sound effects. Ed Newton-Rex, who earned a bachelor of arts degree in music from University of Cambridge, founded JukeDeck[6] after he went to a computer science class in Harvard University. JukeDeck is an online music generator, developed with deep learning(as part of artificial intelligence). This paper believes that JukeDeck meets the industry demand with two offerings[7]: (I) JukeDeck Rapid generation of pleasant and unique music with deep learning The algorithm design by Ed Newton-Rex with artificial intelligence is different from the generation of background music and other music by the websites that use loop audio files. JukeDeck generates music pleasing to the ears with one tone at a time and avoids repetitions by analyzing musical forms, harmonies and tones with deep learning, so that the users in pursuit of originality and unique can acquire the musical materials within approximately 30 seconds, without worrying that they sound similar with others[8]. Greater flexibility in length to create bespoke styles and feelings JukeDeck offers flexibility in the length of music, up to five minutes depending on the preference of users. An extension is possible by mixing up different fragments. It is also possible to define musical styles and formats, e.g. piano, folksongs, electro and ambient music[9], as well as the feelings to be aroused, such as uplifting and melancholic. The music generated by deep learning is different from the free or paid music databases which use the so-called canned music and suffer the problems of mismatches between the film length and music length[10]. (II) Amper Music   Amper Music was founded by the Hollywood songwriter Drew Silverstein (founder/CEO), Sam Estes and Michael Hobe[11] with the ambition to take a step further from music generation by artificial intelligence. In the spring of 2018, the company raised another $4 million for the development of music composition with artificial intelligence, the expansion of international markets and the recruitment of more talents. In the press release, Drew Silverstein said, “Amper’s rapid growth is a testament to how the massive growth of media requires a technological solution for music creation. Amper’s value stems not only from the means to collaborate and create music through AI, but also from its ability to help power media at a global scale.”[12]   Similar with JukeDeck’s appeal to the public, Amper Music’s artificial intelligence allows users with no musical experience to create real-time and order original music[13]. It supports all the media formats. All is required is the choice for rhythms, styles and musical instruments desired[14]. Meanwhile, Amper Music posits that its music is royalty free, and comes with a global, perpetual license when synced to the outputs. In other words, users do not have to worry about legal procedures or financial costs[15]. II. Writing Pens Take Flight: A Challenge to the Fundamental of Literary Creation and Trigger for Labor Transformation   Neuhumanismus (or Neohumanism) is about the achievement of self-mastery and humanity ideals through the study of classics. Compared with humanism, neohumanism places a greater focus on emotional expression and artistic creation. It also emphasizes the importance of language learning to self-realization of individuals.[16] After studying the works of 519 contemporary poets in the Chinese society, artificial intelligence has published modern poetry and made successful inroads to the world of literature traditionally driven by emotions and imaginations. In fact, it has posed a credible challenge to the human-centric humanism where only humans are endowed with the gift of artistic creativity. Artificial intelligence has been nominated for literary awards, evidenced of the quality of outputs generated by deep learning. With the support of massive data and analytics, it is only a matter of time for artificial intelligence to possess the literary creativity comparable to humans.   However, the concern for originality in literature and the issues surrounding plagiarism and copyrights are the key determinants that influence of literary creation by artificial intelligence. This begs the questions about the ethics of literary creation. It is necessary to start with an understanding of how artificial intelligence creates, before the analysis of ethical and regulatory frameworks. (I) Xiaoice’s Collection “Sunshine Misses Windows”   Xiaoice is the chatbot launched by Microsoft’s Software Technology Center Asia (STCA) in China in 2014. In 2017, Xiaoice published her collection of poems “Sunshine Misses Windows”[17], written by looking at pictures. The deep learning algorithms behind were co- developed by Wu Zhao-Zhong and Cheng Wen-Feng, two students in the Graduate Institute of Networking and Multimedia, National Taiwan University.   The artificial intelligence writes poetry with the following methodology[18]: Use of image recognition technology to identify the keywords in the pictures: The adoption of image recognition technology developed by Microsoft’s Software Technology Center Asia (STCA) to identify the nouns in the pictures such as the bridge, skies and trees and the adjectives that express feelings such as beautiful or annoying. Matching of keywords from the training database: The training data for the matching of keywords and poetry database was the works of a total of 519 contemporary poets since the 1920s. The purpose was to fill in the gap between keywords and training data. Generation of poems: deep learning trained in the language model with keywords to create poems Improvement of poems: literary professionals and readers invited to give ratings. Submission of writings as an anonymous author to improve Xiaoice’s capability.   The above is a summary of Xiaoice’s creative journey. Microsoft claims that the collection of poems was 100% written by Xiaoice, and it is the first collection of poems 100% written by artificial intelligence in history. The poems were not edited by humans and wrong characters were maintained as they were. The title “Sunshine Misses Windows” was also named by Xiaoice herself[19]. Despite all these, the originality and even the most fundamental “literality” of these poems are still questioned.   At the end of 2018, the Research Institute for Humanities and Social Sciences, Ministry of Science & Technology and National Taiwan University organized the forum “Culture and Technology II: AI’s Literature Dream — Sunshine Misses Windows. Does Humanity Have a Boundary?” The professor in the Department of Chinese Literature, National Taiwan University and the poet Tang Juan discussed Xiaoice’s works[20] and commented as a critic of contemporary poetry. Xiaoice uses extensively the same vocabulary (such as the beach). Unable to use punctures, she can only break sentences and lines. Most importantly, her writings do not reflect our times and real experience. In other words, Xiaoice’s poems do not possess the unique perspective and soul of poets and literary characters. This may be the outcome of her reading of works from 519 poets from the 1920s. As a result, she is not able to connect with our times and real life and finds it difficult to resonate the shared emotions of people today. Tang Juan’s comment is more than just about literature. It is also about the selection and sourcing of training data, a prerequisite for the development of artificial intelligence, as well as the cost and consideration for copyright licensing.   The research and development by corporates in artificial intelligence requires the corresponding and suitable training materials, particularly in the domain of literature. As commented by the poet Tang Juan, it requires extensive sources of contemporary works. It means the increasing difficulty to circumvent the works still protected by copyrights. If this cost consideration remains a hurdle, it is impossible to make improvements in further research. Put differently, the composition of training data is potentially a cost concern for copyright licensing. Before the legal system becomes well-developed and the establishment of consensus on the issues concerning training data, the possible infringement is an absolutely necessary balancing act for any robust developers and companies involved in artificial intelligence. (II) Yuurei Raita’s “The Day A Computer Writes A Novel”   In 2013, Nikkei started to offer the Nikkei Hoshi Shinichi Literary Award to outstanding short Si-Fi novels, as a tribute to the late science fiction writer Hoshi Shinichi[21]. Three years later, Yuurei Raita’s “The Day A Computer Writes A Novel” appeared on Nikkei’s list of acceptance for competition. Miss Yoko is the leading character in this 2000-character short sci-fi novel[22]. Raita-kun is in fact an artificial intelligence team “Wagamama artificial intelligence as a writer” led by Hitoshi Matsubara, President of the Japanese Society of Artificial Intelligence and a professor in Future University[23]. Below is a description of their deep learning techniques[24]: Analysis of writing styles from training data: The team provides training data as the learning basis for artificial intelligence. (For this competition, the data is approximately 1,000 short stories written by Hoshi Shinichi.) The purpose is to analyze the frequently used words, novel structures and characters. Resource integration by the team: The team integrates the analyzed data with online information, storyline programs, human emotions and settings, and decides on characters, contents and plots[25]. Researchers provide three instructions, i.e., when, the weather, doing what so that artificial intelligence automatically generates detailed and tangible contents. Automatic generation of new works: Artificial intelligence refines the details and polishes the texts, to generate the new story by Hoshi Shinichi with fragments such as: “The same temperature and humidity in the room is maintained as usual. Yoko sits idly on the sofa, dishevelled and playing a dull game uninterested.”   The procedures of novel contents generation described above indicate that artificial intelligence still relies on humans for setups and assistance. In contrast with the claim by the Microsoft team that Xiaoice is 100% artificial intelligence, the team in Japan confessed that artificial intelligence writing is still in a nascent stage.   At least in literature types such as novels, artificial intelligence still needs appropriate guidance from humans for necessary writing elements, in order to generate and connect fragments to establish the finalized pieces. In general, artificial intelligence can only be held responsible for 20% of work[26]. However, the development of technology continues at its pace. When it is no longer easy to differentiate a piece of creative writing is by humans or by machines, the limitation of copyright protection to human’s creative works will be an obsolete approach. (III) Tencent: Robot “Dreamwriter”   The above two AI writing teams focus on creative literature. In China, Tencent has developed Dreamwriter to rapidly generate news products. In the 2018 International Media Conference in Singapore[27] hosted by the East West Center, a think tank in the U.S. at the end of June 2018, Tencent demonstrated its translation engine. Speakers spoke in Chinese and the engine did simultaneous translation into English shown on the projector screen[28].   Tencent’s artificial intelligence “Dreamwriter” project started as a push engine for news flashes such as sports events. It later extended into financial and economic data and reporting, a field with extensive data and conducive to AI development and ML acceleration[29]. Dreamwriter only takes half to one second to generate a piece of news. It can generate approximately 5,000 articles per day, equivalent to the output of 208 journalists. This implies a transformation of labor requirements in journalism. Human reporters will be involved in in-depth coverage that requires creativity, industry knowledge and judgement[30], whilst basic and factual reporting will be completed by artificial intelligence. III. Brave New Work for Paintings: Rights Ownership in the Presence of Sophisticated Deep Learning   In the autumn/winter of 2018, the Paris-based AI team Obvious presented “Portrait of Edmond Belamy”[31] in Prints & Multiples auction in New York. This painting was sold for a surprising high price of[32] $432,000 (or over NT$13 million)[33], as the first AI-generated painting being auctioned. The Obvious team focuses on Generative Adversarial Network (GAN)[34], a hot topic for the development of deep learning. (I) Technique to Improve Deep Learning: Generative Adversarial Network (GAN)   The GAN technique was developed by Ian Goodfellow[35] in 2014 to promote and enhance deep learning by massively reducing the amount of training data required and cutting down on human intervention, assistance and involvement[36].   The GAN method can be illustrated in a high level by referring to the classical example of the image recognition for cats previously mentioned. The neural network model (as a deep learning technique) enables artificial intelligence to learn how to identify cats from a massive volume of pictures of cats. However, it is necessary for humans to train the machine by providing signs and feature descriptions for each picture. In contrast, the GAN technique is about the training of two competing networks,[37] i.e., a generative network and a discriminant network[38]. The generative network is responsible for generating the pictures that resemble real cats (i.e. made-believe cats) and the discriminant network reviews and determine whether the pictures are authentic. The two networks enhance capabilities by competing with each other. The idea is to improve the learning and competence of deep learning[39]. (II) Application in the Art of Paintings   The GAN method can be used to generate paintings such as “Portrait of Edmond Belamy”. It can also identify fake paintings. Founder/CEO Jensen Huang of Nvidia, a leading artificial intelligence company, said in a forum that the GAN technique allows one neural network to paint the pictures in the Picasso style and the other network to identify images and paintings with unprecedented discriminant capabilities[40]. The seventh year of the Lumen Prize gave the biggest award to a nude portrait generated with the GAN technique[41]. The GAN applications have been mushrooming – turning a scribble into an art, a low-definition picture into a high-definition one, an aerial graph into a photo[42].   Below is a brief description of the concepts and procedures for the Obvious research team’s completion of “Portrait of Edmond Belamy”[43]: Analysis of portraits from training data: A total of 15,000 portraits from the 14th century to the 20th century as the training data Generative network vs. discriminant network: The generative network generates paintings on the basis of training data. The discriminant network seeks to identity the difference from human-created paintings in order to improve the capability of the generative network. This process continues until the discriminant network is no longer to tell a machine-created painting from a human-created painting. (III) Ownership of Rights to High Economic Value of Artworks   The winning of the Lumen Prize in the UK by the nude portrait generated by artificial intelligence and the surprisingly high auction price paid for Portrait of Edmond Belamy are the testimony of the artificial intelligence’s creative capability. The ownership of the right to the monetary value of these artworks is a topic worthy of exploration.   “The development team ‘Obvious’ for ‘Portrait of Edmond Belamy’ posits that if the author is the person who paints the painting, it is artificial intelligence. If the author is the person who seeks to convey a message, it is us[44]. The human’s role is being undermined as deep learning technology becomes increasingly sophisticated. Going forward, can artificial intelligence become the owner of rights? What should be the regulatory framework for now? At this juncture, this paper conducts an international comparison by examining how different governments consider the emerging legal issues. Three. Copyright Ownership of Works Created by Artificial Intelligence   The explanatory ruling by the Copyright Division, Intellectual Property Office, Ministry of Economic Affairs issued in 2018[45] has expressed the Taiwan government’s stance on the issue of whether the outputs generated by artificial intelligence can enjoy copyrights. Below is the summary: Presumption: Article 10 and Article 33 of the Copyright Law[46] stipulates that only natural persons or legal persons can be the owner of rights and obligations pertaining to creative works and enjoy the protection of copyrights. Positioning and logics: The outputs generated by artificial intelligence are the intellectual results expressed by machines created by humans. Machines are neither natural persons or legal persons and hence do not attract copyrights. Proviso: If the results are created with participation of natural/legal persons and the machines are being operated for analytics, the copyright of the results expressed should belong to the natural/legal persons concerned.   The above explanatory ruling seems to position artificial intelligence completely as a tool. However, the above example suggests an obvious trajectory for the creative journey for deep learning as an artificial intelligence technique. In the current stage and the foreseeable future, the description that robot analytics are straight mechanical operations is completely obsolete given that artificial intelligence is being applied in industry with dramatically reduced (or even completely without) human intervention and participation.   It is a worthwhile exercise to explore the international thinking regarding how the legal framework should address the ownership of rights for outputs generated with deep learning as an artificial intelligence technique and the derived services/products by either opening up new legal structures or simply extending on the existing system. I. European Union (I) European Parliament: Establishment of Electronic Personhood?   The European Parliament's Committee on Legal Affairs (JURI) passed a report on January 12, 2018 to provide suggestions to the Civil Law Rules on Robotics and urge the European Commission to set up laws and regulations governing robots and artificial intelligence by defining electronic personhood, similar with legal personhood for corporates as litigation entities for any issues associated with rights and obligations of artificial intelligence[47]. (II) Court of Justice of the European Union: Only Works Accomplished by Humans Eligible for Protection   The Court of Justice of the European Union’s landmark case Infopaq International A/S v. Danske Dagbaldes Forening[48]suggests that copyrights are only applicable for original works, with originality reflecting the “author’s own intellectual creation.” The general interpretation is that such works should reflect the author’s personality. Hence, only human authors meet this criterion[49]. The third paragraph of Article 1 of the Directive 2009/24/EC also clearly states that only works that are the authors’ own intellectual creation enjoys eligibility for protection[50]. (III) Data Protection: GDPR and Declaration of cooperation on Artificial Intelligence   The General Data Protection Regulation (GDPR) in European Union attracted significant attention among the companies active in the EU market in 2018. In fact, the GDPR provides comprehensive and representative regulations that have direct influence on technological development of artificial intelligence training, as well as legal protection and right construction on data, the crude oil for deep learning.   Below are a few examples: Article 20 on data portability: The data subject has the right to receive his/her personal data from the data controller in a structured, commonly used and machine-readable format. This helps the industry to establish metadata and forms the basis of the database for artificial intelligence training. The consistency of metadata will enhance the training. Article 22 on automated individual decision-making The data subject has the right not to be subject to a decision based solely on automated processing. The data controller must lay down suitable measures to safeguard the data subject’s rights. Article 35 on data protection by design and by default This article provides the legal protection of large-scale and systematic monitoring of public and open areas with artificial intelligence and strikes a balance between the use of personal data and the interest of data subjects.   On top of the GDPR, the 24 member states of the European Union signed the Declaration of Cooperation on Artificial Intelligence in 2018, in order to enhance access to public sector data for the digital single market. II. United Kingdom (I) Copyright Law: Source of Laws for Program Developers to Obtain Copyrights   The copyright laws are stipulated in the Copyright, Designs and Patent Act (CDPA) 9 (3)[51]. It forms the source of the laws that grant copyrights to the developers of computer-generated works. Article 178 of the CDPA defines computer-generated works as the outputs generated by machines without human authors[52].   In contrast with the Court of Justice of the European Union’s decision that only human authors are eligible for copyright protection, the UK government opens up another door by specifying that program designers can obtain copyrights even if creative sparks come from machines[53]. This system is considered the most efficient because it enhances incentives for investments[54]. (II) Public Sector: Open up Government Data   The UK government also opens up its data by posting all the official statistics on the website www.data.gov.uk. The Digital Economy Bill provides the legal framework for government agencies to use each other’s data for the benefit of the public, so as to effectively address the issues surrounding frauds and debts and improve the real-timeliness and accuracy of national statistics.   As part of the Brexit preparation, the UK government has created its own GDPR (2018) to ensure the continued smooth cross-border operations of companies after Brexit. As it offers higher protection of consumers’ data and information, it is worthwhile to refer to the UK GDPR as a template for legal systems and rights frameworks. III. United States (I) U.S. Copyright Office: Only Intellectual Achievements of the Human Mind Eligible for Protection   The case law originated in 1991——Feist Publications v. Rural Telephone Service Company[55]confirms that copyrights protect the creative powers of the mind. In the Naruto v. Slater (2016)[56] case, the court determines that the photos taken by a monkey are not eligible for copyright protection. Article 313.2 of the implementation guidelines of the Copyright Act issued by the U.S. Copyright Office specify that the works created without human authors are not protected by the Copyright Act. The amendment to Article 313.2 in 2017 states clearly that the U.S. Copyright Act only protects the intellectual achievements of the human mind[57]. The U.S. Copyright Act 503.03(a), titled “Works-not originated by a human author” also states that only works created by a human author can register for copyrights[58]. (II) Employment Principle: Enhanced Incentives and Investment Willingness   The above court judgements and the implementation guidelines of the U.S. Copyright Act indicate that the U.S. Copyright Office does not confer non-human copyright[59]. However, the U.S. judicial rulings have allowed “the work made for hire provision” as exception to the creative authors, in order to encourage corporate investments. The 1909 amendment to the U.S. Copyright Act included the hired employees as authors. Unless otherwise agreed, “the author or proprietor of any work made the subject of copyright by this Act, or his executors, administrators, or assigns, shall have copyright for such work under the conditions and for the terms specified in this Act”. A typical example is the news agency’s employment of full-time journalists to produce editorials. The works by employees are a company’s key copyright assets[60]. (III)Employment/Sponsorship Principle if Realized in Taiwan: Companies Investing in Works to Obtain Copyright Protection   Article 11 of the R.O.C. Copyright Act stipulates the ownership of the right to the works of employees on a case-by-case and factual basis. The decision is based on the nature of work, e.g., completion under the employer’s instructions or planning, the use of the employer’s budgets or resources. It is not necessarily related to the work hours or locations. In principle, the employee is the author of the works completed by him/her on the job. However, the employment contract supersedes if it specifies that the employer is the author. On the other hand, if the employee is the author, the intellectual property belongs to the employer. The contract supersedes if it specifies that the employee enjoys the intellectual property. Article 12 is about sponsorship and commissioning. Unless specified by the contract, the sponsored owns the intellectual property of his/her works and the sponsor has the right to use such intellectual property[61]. In sum, the ownership of the right to the outputs generated by artificial intelligence is similar with the employment/sponsorship principle. It is not set in the vacuum of legal contexts.   Therefore, the scholar in Taiwan Lin Li-Chih suggests that the employment principle in the U.S. may be adopted. She posits that when certain conditions are met, artificial intelligence may be treated as the author, so that the outputs generated by artificial intelligence can be protected and the investing research institutes or corporates can own the works[62]. As both legal persons and natural persons can be authors in Taiwan, Lin Li-Chih proposes this approach to resolve disputes given the massive value to be created by artificial intelligence for different applications and the potential lengthy legislative process or laws disconnected from industry expectations. The idea is to avoid the human author requirement from hindering industry investments and innovations for works generated by artificial intelligence[63]. According to the employment/sponsorship principle, deep learning as an artificial intelligence method can be inferred to as the author and then teams and companies that develop the algorithms should own the intellectual property of the works. This will serve as the legal foundation for intellectual property protection. Four. Conclusion: Legal System and Policy Framework for Emerging Technologies I. Construction of Laws and Regulations on a Rolling Basis According to the Reality of Emerging Technologies   Every law has its purpose, and the contents of laws depend on their regulatory objectives. However, such contents should be anchored on facts, in order to align the intended purposes. This is particularly the case for the laws and regulations governing emerging technologies because such laws and regulations should capture the fact of technological developments. The most straightforward and fundamental approach to relax the control of the existing legal mechanism is via communication, coordination and understanding. It can be initiated with more dialogues between the government agency responsible for the construction of the legal environment and the industries and the public as subjects of the laws and regulations.   Regulators may wish to come up with dedicated laws for the comprehensive coverage of emerging technologies given the lack of understanding about the technology and the sweeping effects of the technology. However, not all technologies require special legislations. According to Frank H Easterbrook’s article “Cyberspace and the Law of the Horse” published by the University of Chicago’s legal journal, it is advised to properly categorize and analyze existing laws and regulations and apply the suitable ones to new technologies for issues surrounding intellectual property, contracts and torts, as if from the Law of the Horse to the Law of Cyberspace[64]. Similarly, the ownership of copyrights associated with artificial intelligence and the governance of emerging technologies such as autonomous driving and robots may be dealt in this way.   The above analysis on the legal regimes in the European Union, the United Kingdom and the United States highlights two issues concerning the regulation of artificial intelligence and the development of legal environments. The growing sophistication of deep learning will enhance the capability of artificial intelligence in thinking, analysis and creation, with human intervention expected to be reduced to almost zero. The legal regime governing emerging technologies cannot stand in the way of technological and industry development or incentives for investment, as originally intended by the intellectual property laws. A balancing act is required.   This paper thus suggests two models: Forward-looking approach to label rights ownership with legal articles This is the route taken by the UK government, by directly amending the intellectual property laws to specify that intellectual property of artificial intelligence belongs to program developers. It is the most efficient approach of paving the way for technological development by providing incentives to companies and developers. Adoption of the employment/sponsorship principle in conjunction with safe harbor clauses Another approach is without touching on the sensitive issue of law amendments. Judicial rulings or administrative interpretations by competent authorities are gradually released in the context of existing laws. A temporary solution is introduced with the adoption of the employment/sponsorship principle with corresponding templates and references for contract construction in the industry. This can work in conjunction with safe harbor clauses in the long run, by slowly converging the diversity of opinions and perspectives from corporates, government agencies and academic/research institutions. Adjustments by tightening or loosening on a rolling basis should be made in order to work out the optimal boundary and establish the basis for legislation in the next stage. II. Data as a Prerequisite for Artificial Intelligence Training   In Taiwan where the legal environment is not yet ready or clear, the ownership of intellectual property for outputs generated by artificial intelligence also involves the potential licensing royalties for the sourcing of training data.   It is worth noting that the use of data for artificial intelligence may affect the basic human rights due to discrimination or bias resultant from training data or algorithms. Therefore, it is necessary to enhance transparency and the protection of human rights conferred by the constitution with corresponding legal systems and ethical frameworks such as due process and fairness principle[65]. The other critical issue is the training database required for artificial intelligence applications. The government should provide more open data as a policy to support technology development in the corporate world or at research organizations. It is also necessary to make government information the structured metadata in order to enhance the efficiency and quality of research outputs. This is to facilitate added value by private sectors with data as an infrastructure provided by the government. Put differently, the government opens up structured data to empower the research and development of artificial intelligence; whilst the private sectors offer professional technology and development capabilities.   In terms of promoting data openness and applications, the government assumes greater accountability in the balancing between data use and data protection, the two equally important public interests. As an island of technology, Taiwan should look beyond the horizon of skies and oceans in the era where information and data flows without borders. The Taiwan government should establish the capability in data openness, protection and control by joining international forums. For instance, the government can apply with the APEC to join the Cross-Border Privacy Rules System in order to encourage regional collaborations in data control and construct datasets with the resources of the country. It is important to focus on the process of data collection, processing, analysis and utilization and ensure policies are implemented with the protection of civil and human rights such as the Right to Know, the Right to Withdraw and Citizen Data Empowerment. [1] David G. Lowe, Object Recognition from Local Scale-Invariant Features, Proceedings of the Seventh IEEE International Conference on Computer Vision, https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=790410 (last visited Dec. 27, 2018) excerpt from “These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision”. [2] AI Lesson 101: Illustration of 27 Neural Network Models, Tech Orange, January 24, 2018, https://buzzorange.com/techorange/2018/01/24/neural-networks-compare/ (last visited on December 27, 2018) [3] Chen Yi-Ting (Bachelor’s Degree from Department of Physics, National Taiwan University, currently a PhD candidate in Department of Applied Physics, University of Stanford), Artificial Intelligence Starts with Neurons, May 3, 2018, https://case.ntu.edu.tw/blog/?p=30715 (last visited on December 27, 2018) [4] Hung-yi Lee’s personal profile at http://speech.ee.ntu.edu.tw/~tlkagk/. Currently teaching in Department of Electric Engineering, National Taiwan University; previously a guest scientist in MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL); specialization in machine learning and deep learning [5] Chen Yan-Cheng, Who Is Likely to Lose Jobs in the Era of Artificial Intelligence? Experts Explains the Professional Skills in Demand for Deep Learning, December 26, 2018. https://www.managertoday.com.tw/articles/view/56859 (last visited on December 27, 2018) [6] Details available on JukeDeck’s official website at https://www.jukedeck.com/(last visited on January 11, 2019) [7] In addition to the leverage of two key features of artificial intelligence, JukeDeck is also very friendly to creative teams in need of musical materials in terms of royalties, fee structures, UI/UX design. The company offers free downloads to non-commercial users. An individual or a small group (of fewer than 10 people) can enjoy five free downloads each month and pay $6.99 per song for the sixth download and above. Large groups (of ten people or more) should pay $21.99 for each download. [8] DIGILOG Authors, “A Nightmare for Musicians? AI Online Music Composer System – JukeDeck, DIGILOG, June 2, 2016, https://digilog.tw/posts/668 (last visited on January 2, 2019) [9] Laird Studio, Let the Online Music Composer Jukedeck Produce Unique Background Music for Your Films or Games! March 8, 2016, https://www.laird.tw/2016/03/jukedeck-jukedeck-bgm.html (last visited on January 10, 2019) [10] As above. [11] Amper Music’s official website at https://www.ampermusic.com/(last visited on January 10, 2019) [12] GlobeNewswire, Amper Music Raises $4M to Fuel Growth of Artificial Intelligence Music Composition Technology, March 22, 2018, https://globenewswire.com/news-release/2018/03/22/1444796/0/zh-hant/Amper-Music%E7%B1%8C%E8%B3%87400%E8%90%AC%E7%BE%8E%E5%85%83%E4%BB%A5%E6%8E%A8%E5%8B%95%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E7%B7%A8%E6%9B%B2%E6%8A%80%E8%A1%93%E7%9A%84%E7%99%BC%E5%B1%95.html (last visited on January 10, 2019). This round was led by Horizons Ventures, with Two Sigma Ventures, Advancit Capital, Foundry Group and Kiwi Venture Partners. This brings the company's total investment to $9 million. [13] GlobeNewswire, same as above [14] Smart Piece of Wood, Free Online Composer Enabled by AI, Amper Music, March 1, 2017, Modern Musician,https://modernmusician.com/forums/index.php?threads/%E5%85%8D%E8%B2%BB%E7%B7%9A%E4%B8%8A%E5%B9%AB%E4%BD%A0%E4%BD%9C-%E7%B7%A8%E6%9B%B2%E7%9A%84%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%EF%BC%9Aamper-music.225650/ (last visited on January 10, 2019) [15] GlobeNewswire, same as Note 12 [16] Fang Yung-Chuan, Neohumanism, National Academy for Educational Research, http://terms.naer.edu.tw/detail/1312151/(last visited on January 10, 2019). Neohumanism emerged in Europe in the 18th and 19th century, against rationalism and utilitarianism advocated by the enlightenment movement. Neohumanism argues that the value of things is not hinged on practicality. Rather, it stems from the things themselves. Humanity is precious not because of rationality, but resultant from emotional satisfaction in life. Cultures are originated by the spontaneous activities of humanity, on the basis of emotions and imaginations. [17] Synopsis by books.com.tw, who sells online Xiaoice’s “Sunshine Misses Windows”, the first collection of poems generated by artificial intelligence in history, August 1, 2017, China Times Publishing Co. https://www.books.com.tw/products/0010759209 (last visited on January 13, 2019) [18] Wong Shu-Ting, AI Talents in Taiwan Find Stage in China: NTU Students Participate in R&D That Empowers Microsoft’s Xiaoice to Write Poetry by Looking at Pictures, BusinessNext, June 6, 2017, https://www.bnext.com.tw/article/44784/ai-xiaoice-microsoft(last visited on January 10, 2019 [19] Synopsis by books.com.tw, same as Note 17 [20] The organizer did not provide handouts from the speakers. The summary was based on the author’s note. [21]Lin Ke-Hung, “More Than Playing Chess. AI Writes Novels Too. AI Novel Passes Preliminary Screening for a Novel Award! Reading at Frontline, https://news.readmoo.com/2016/03/25/ai-fictions/(last visited on January 10, 2019) [22] Ou Tzu-Jin, “2,3,5,7,11..?AI-written Novel in Japan Nominated for a Literary Award, April 7, 2016, The News Lens , https://www.thenewslens.com/article/38783(last visited on January 10, 2019) [23] TechBang, AI Team in Japan Develops Robots That Write Short Stories and Participates in Literary Competitions, TechNews, March 28, 2016, http://technews.tw/2016/03/28/ai-robot-novel-creation/(last visited on January 10, 2019) [24] Ou Tzu-Jin, same as Note 20 [25] TechBang, same as Note 21 [26] Lin Ke-Hung, same as Note 19 [27] The title of the forum was “What is News Now?”. It attracted over 300 journalists and media experts from the U.S. and Asia Pacific to discuss media phenomena today. Detailed agenda available at East West Centre’s official website at https://www.eastwestcenter.org/events/2018-international-media-conference-in-singapore(last visited on January 10, 2019) [28] Jason Liu, “Robot Writer, Transformation of South China Morning Post, State Monitoring, International Media Conference Day 1, China, Medium, June 25, 2018, https://medium.com/@chihhsin.liu/%E5%AF%AB%E7%A8%BF%E6%A9%9F%E5%99%A8%E4%BA%BA-%E5%8D%97%E8%8F%AF%E6%97%A9%E5%A0%B1%E8%BD%89%E5%9E%8B-%E5%9C%8B%E5%AE%B6%E7%9B%A3%E6%8E%A7-%E5%9C%8B%E9%9A%9B%E5%AA%92%E9%AB%94%E6%9C%83%E8%AD%B0day1-%E4%B8%AD%E5%9C%8B-c9c20bd00d75(last visited on January 10, 2019) [29] Jason Liu, same as above [30] Jason Liu, same as above [31] First Time Ever in the World!AI-Created Portrait, Sold at Christie's Auction for NT$13.34 Million, Liberty Times, October 26, 2018, http://news.ltn.com.tw/news/world/breakingnews/2592633(last visited on January 10, 2019) [32] The selling price is 40x higher than the expected price. The buyer’s identity is unknown. Chang Cheng-Yu, “First Time Ever! AI-Created Portrait Auctioned at Christie’s for NT$13.34 Million, October 26, 2018, LimitlessIQ,https://www.limitlessiq.com/news/post/view/id/7241/ (last visited on January 10, 2019) [33] Lin Pei-Yin, Does the NT$10m Worth AI Portrait Have Intellectual Property?” Apple Daily, Real-Time Forum, November 29, 2018, https://tw.appledaily.com/new/realtime/20181129/1475302/(last visited on January 10, 2019) [34] Jamie Beckett, What Are Generative and Discriminant Networks? Hear What Top Researchers Say, Nvidia, May 17, 2017, https://blogs.nvidia.com.tw/2017/05/generative-adversarial-network/(last visited on January 10, 2019) [35] Jamie Beckett, same as above. Ian Goodfellow is currently a Google research scientist. He was a PhD candidate in the Université de Montréal when he came up with the idea of generative adversarial networks (GAN). [36] Jamie Beckett, same as above [37] Jamie Beckett, same as above [38] Chang Cheng-Yu, same as Note 32 [39] Jamie Beckett, same as Note 34 [40] Video for the speech: GTC 2017: Big Bang of Modern AI (NVIDIA keynote part 4), link at https://www.youtube.com/watch?v=xQVWEmCvzoQ (last visited on January 10, 2019) [41] Wu Chia-Zhen, AI-Generated Nude Portrait Beats Real People’s Works by Claiming the UK Art Award and Prize of NT$120,000, LimitlessIQ, October 15, 2018 https://www.limitlessiq.com/news/post/view/id/7070/(last visited on January 10, 2019) [42] Jamie Beckett, same as Note 34 [43] Chang Cheng-Yu, same as Note 32 [44] Chang Cheng-Yu, same as Note 32 [45] The explanatory ruling by the Copyright Division, Intellectual Property Office, Ministry of Economic Affairs, Email 1070420, issued on April 20, 2018, https://www.tipo.gov.tw/ct.asp?ctNode=7448&mp=1&xItem=666643(last visited on January 2, 2019). The discussion was in response to the training outcome of voice recognition patterns based on analytics of the 1999 Citizen Hotline voice data. [46] According to Article 10 of the Copyright Law, authors enjoy copyright at the time of the work completion. Article 33 stipulates that copyright for legal-person authors lasts 50 years after the first publication of the work concerned. [47] Yeh Yun-Ching, Birth of New Type of Legal Right/Liability Entity ─ Possibility of Robots Owning Copyrights According to 2017 Proposal from European Parliament, IP Observer - Patent & Trademark News from NAIP Issue No. 190, July 26, 2017 http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Laws/IPNC_170726_0201.htm (last visited on January 2, 2019) [48] C-5/08 Infopaq International A/S v. Danske Dagbaldes Forening. [49] Andres Guadamuz, Artificial Intelligence and Copyright, WIPO MAGAZING, October 2017, https://www.wipo.int/wipo_magazine/en/2017/05/article_0003.html (last visited on January 19, 2019). [50] The article indicates that “A work should be protected in “the sense that is the authors’ own intellectual creation. No other criteria shall be applied to determine its eligibility for protection”. [51] Excerpt from the original legal article: in case of a literary, dramatic, musical or artistic work which is computer-generated, the author shall be taken to be the person by whom the arrangements necessary for the creation of the work are undertaken. [52] Excerpt from the original legal article: generated by computer in circumstances such that there is no human author of the work. [53] Andres Guadamuz, supra note 49. [54] Id. [55] Feist Publications v. Rural Telephone Service Company, Inc., 499 U.S. 340 (1991). “the fruits of intellectual labor that are founded in the creative powers of the mind.” [56] Naruto v. Slater, 2016 U.S. Dist. (N.D. Cal. Jan. 28, 2016). [57] The 2014 version of Article 313.2 provides a list of the examples not eligible for the U.S. Copyright Act protection. These include the works generated by the nature, animals or plants and the works purely generated by machines or machinery at random, without any creative inputs or intervention from humans. The examples given are photos taken by a monkey and murals painted by an elephant. The 2014 version establishes that works not created by humans are not eligible for copyright protection. The 2017 version takes a step further with more specific and straightforward wording. [58] Copyright Act 503.03(a): Works-not originated by a human author. In order to be entitled to copyright registration, a work must be the product of human authorship. Works produced by mechanical processes or random selection without any contribution by a human author are not registrable. Thus, a linoleum floor covering featuring a multicolored pebble design which was produced by a mechanical process in unrepeatable, random patterns, is not registrable. Similarly, a work owing its form to the forces of nature and lacking human authorship is not registrable; thus, for example, a piece of driftwood even if polished and mounted is not registrable. [59] Andres Guadamuz, supra note 49. [60] Lin Li-Chih, An Initial Examination of Copyright Disputes Concerning Artificial Intelligence —— Centered on the Author’s Identity, Intellectual Property Rights Journal, Volume 237, September 2019, pages 65-66 [61] The legislative rationale for Article 12 of the R.O.C. Copyright Act: The sponsor and the sponsored are typically in a more equal position for the works completed with sponsorship. It is different from the situation where the works are completed by an employee by using the hardware and software offered by the employer and receiving salaries from the employer. Therefore, the ownership of copyrights depends on the contract between the sponsor and the sponsored regarding the investment and sponsorship purposes. Unless otherwise specified by the contract, the sponsor typically provides funding because of his/her intention to use the works completed by the sponsored. Therefore, the intellectual property should belong to the sponsored. [62] Lin Li-Chih, same as Note 60, pages 75-76. Further reference of the principle used in the U.S. system: Annemarie Bridy (2016), The Evolution of Authorship: Work Made by Code, Columbia Journal of Law, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2836568. Also the same author (2012), Coding Creativity: Copyright and the Artificially Intelligent Author, Stanford Technology Law Review, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1888622. [63] Lin Li-Chih, same as Note 60, page 76 [64] Frank H Easterbrook, Cyberspace and the Law of the Horse, 1996 U. CHI. LEGAL F. 207. [65] Please refer to State v. Loomis, 317 Wis. 2d 235 (2016).

A Survey Study on the Intellectual Property Management amongst Taiwanese Companies

J. Kitty Huang Chien-Shan Chiu Background In order to provide insight into intellectual property (IP) awareness, the status quo as well as potential hardship and demands arise over IP management, STLC was commissioned by IDB (Industrial Development Bureau) to conduct a survey study in June 2010. In this article, we provide briefings on the contents, research methodology and major findings of this study. About the research The survey questionnaire was sent by means of emails or posts to a total of 1000 business establishments randomly generated from the registration data facilitated by the Ministry of Economic Affairs. This was also the first time that such a survey has been envisaged on such a comprehensive scale, covering businesses located around Taiwan with the aim being to produce an in-depth analysis into IP management in various industries including manufacturing, precision machineries, photonics, bio-medicals, info-techs, semiconductors etc. Sixty-five percent of the respondents have less than fifty employees and the overall response rate achieved was 13.1%.1 A continuing need to strengthen IP awareness is required The first section of the questionnaire dealing with IP awareness gauged respondent companies IP knowledge and understanding through a series of questions relating to IP law and practice. When asked whether formal registration was necessary to obtain a range of intellectual property rights (IPRs), over 70% of companies replied with correct answers, namely patents, designs and trademarks. However, through other questions at a more advanced level, the responses revealed a general lack of knowledge in IP law and hence a continuing need to strengthen IP awareness is required. For instance, overall 70% of companies know that obtaining patents will require formal registration, yet surprisingly even of these over 50% incorrectly thought the manners of patent utilization, such as making products, will not result in infringing others IPRs. This result arguably suggests that respondents are in the main unaware that a patent does not give the patent owner the right to exploit the patented invention himself, but rather, he has only the “exclusive right” to stop others from doing so. For another instance, whilst 32% of respondents inaccurately thought that a formal registration is required to obtain copyrights, nonetheless this does not equate to the result being a near 70% of companies have a full and correct knowledge in regard to copyright. When faced with a slightly more obscure question of who would own the copyright in commissioned work (such as website creation) in the absence of a contract, 26% of companies didn’t know and 30% answered incorrectly. On the same token, though only 10% of respondents erroneously believed that trade secrets would require a formal registration, when asked whether the company’s client list may be a trade secret, the number of correct replies (61%) drops sharply when compared to the previous one. Though intended as a question to discriminate at the upper levels of trade secret awareness, the replies are more likely to reflect a lack comprehension of the subject among Taiwanese companies. The important message arise from the overall scales in the first section of the survey is that the need for IP awareness promotion and enhancement amongst companies in Taiwan still exists. Lack of IP expertise is a major barrier In the second section of the questionnaire companies were asked a series of questions which were intended to measure the status quo through the extent of IP management practices. Perhaps one would agree that the issue of perceptions of the importance of IP to a company is greatly linked to how effective it manages them. When asked to indicate reasons as to why IP is important to their business, the replies were rather polarized. The two most popular reasons were “means to differentiate from competitors” (33%) and “to prevent infringement” (30%). The distinction between the two is clearly that the former reason is relatively active and strategic whilst the latter is perceived to be passive and defensive. On the other hand, “to retrieve the cost of R&D” (4%) and “to attract more investors” (5%) are least likely to be seen as the reasons why IP is important to them. The results may suggest that generally speaking, Taiwanese companies tended not to utilize their IP to generate revenues nor correlate them with the business strategies, but rather, see them more of a shield to avoid infringement. Companies were asked what IPRs they own and the most common ones are trademarks (21%) and utility patents (20%), with invention patents (14%) being the third on the rank. In contrast only 2% of respondent companies own copyrights. While such result may be attributed to the overall structure of the industry, it may also link to the observation that most companies not merely lack the comprehension of copyrights but may also not be aware of owning such IPR. Furthermore, it is also surprising to find that 45% of respondents do not own any IPRs. The absence of IPRs within these companies is perhaps a key indication of poor awareness and inactive management of IPRs amongst many Taiwanese companies. To measure the extent of IP management is not easy as the intensity of it differs both by sector and by size. Therefore, the task is achieved through 9 questions designed on the concept of PDCA (plan-do-check-act) process which would allow the respondents to review and find out any inadequacy in their IP management as they proceed. One would expect that those companies with effective IP management would take care to evaluate the various IPRs required at different time intervals. Whilst all of the answer choices are considered to be “important timings”, for example “when planning for new skills/products/business” and “when further investment in IP would enhance defense (such as infringement prevention); yet the results revealed that over 60% of the companies did not perform such evaluation at whatever timing. This may suggest that in general, companies in Taiwan are inadequately concerned with the evaluation process within their management of IP. Such a result may consequently make them ignoring means to prevent infringement (such as checking competitors’ IPRs and prior-art search) or pay attention to regulation updates. Effective IP management indisputably requires certain monetary inputs. Companies were asked whether they have regularly spent on obtaining and maintaining IPRs the firm owns, and remarkably only about 36% of respondents answered this question. In addition the companies were asked about how much they spent on “application fees”2,“incentives offered to inventors”, “spending on HR” and “other expense”. Only a paltry 6% of all respondent companies spent on all the abovementioned categories and mostly up to the amount of NT$100,000 (roughly USD$3300) per each. Linked with the spending on IPRs is perhaps whether companies have designated staff responsible for managing IPRs or have a separate IP department. Again, 70% of respondents replied negatively to this question and only 10% of some larger companies (with over 200 employees) have specific personnel or department designated to assume this responsibility. The results may indicate a general lack of expertise in managing IPRs as a barrier to leveraging full value of them as well as making proper legal decision in the event of IP related disputes Companies were asked how to protect their IPRs through a variety of methods of protection though the majority (over 72%) didn’t implement any of them. The most highly identified method being “protect core skills by patents”, however, only 35% of companies adopted such protection. Furthermore, roughly 76% of the companies did not conduct training in IP issues for employees, and over 75% did not attempt to assess the efficiency of their management of IP. The explanation to the above is conceivably a general lack of IP expertise due to inadequate monetary inputs as well as perceived high costs for IP specialists within the company. The results ultimately reflect an inefficient execution of IP management in the massive Taiwanese companies. Most companies have only limited resources The final aspect of IP management that has been surveyed is the hardships occurred and accordingly the resources sought to solve them. When asked what are the major difficulties in the process of managing IP, the most common answers were “high expenditure on filing and maintenance” (18%), “lack of professional advice” (15%) and “regulatory complexity” (15%). These results are arguably all related to the facts already discussed in the afore-mentioned paragraphs. In general, the survey revealed that most companies have only limited resources and therefore highly demand external aids such as government funding or projects to help soften the hardships and improve their management skills. Accordingly, “unifying resources for enhancing IP management through a mutual platform” (22%) and “facilitate industry peer networks” (21%) being the most popular resources sought. Furthermore, 14% of the respondents indicated their urge to receive “on-site expert assistance”, and a remarkable 90% of the respondents have never been aware of the TIPS (Taiwan Intellectual Property Management System) project, which is one initiated by the government to help companies set up a systematic IP management system. As a result, efforts to promote the TIPS project should be further devoted as the initial step to assist companies strengthen their IP awareness and management skills. Conclusion The results of the survey present the status quo of IP management amongst the companies in Taiwan which is proportionally consistent with their IP awareness as well as hardships and resources sought. The present study shows what one might expect, that is larger companies tend to be more IP aware and have greater resources to manage their IPRs, whilst the rest of others (especially SMEs) are in the main inadequately aware of IP, which is crucial to enhance active IP management within and throughout their firms. While various resources are highly demanded, perhaps the government should firstly take steps to promote that awareness within and throughout their organizations. Linked with this is the second important point which is that further promotion of the TIPS project should be aimed at not only enhancing IP awareness but also assisting companies to better manage their IPRs. IP management is essential to preserve IP created by companies and the TIPS system would enable companies to foster and strengthen key aspects of IP management such as conduct training in IP issues for employees, evaluate various IPRs required, etc. Some of the complementary measures as such expert consultations and TIPS networks or seminars would also help to alleviate some of the hardships encountered in the process of managing IP. On the other hand, like the “Survey on Business Attitudes to Intellectual Property” being conducted yearly in Hong Kong since year 2004, it is suggested that the present survey research or the alike to be continually carried out to assist promoting IP awareness within Taiwan industry. Finally, we would like to thank everyone who contributed to this survey research and hope that it provides valuable insight into the goals originally proposed. 1.The survey resulted in 157 replies from which 26 of them were nullified by false or incomplete answers. 2.Application fees” include fees occurred from exploring inventions up to application and maintenance, which also include attorney fees.

Korea “Strategies for an Intellectual Property Powerhouse to Realize a Creative Economy” Overview

Background Since 1990, many countries like United States, Japan and EU understand that intellectual properties create higher value added than tangible assets do so these countries respectively transformed their economic types to knowledge-based economy so as to boost economic growth and competitiveness. For example, Japan has legislated “Intellectual Property Basic Act” in 2002 and established “the Intellectual Property Strategy Headquarters” in 2003. United States legislated “Prioritizing Resources and Organization for Intellectual Property Act (PRO-IP Act)” in 2008. China also announced “National Intellectual Property Strategic Principles” in June, 2008. Following the above international tendency of protecting intellectual properties, Korea government has promoted intellectual property related policies and legislated related acts since 2000, such as “Technology Transfer Promotion Act” in 2000, policy of supporting patent disputes settlements and shortened the length of patent examination procedure in 2004. Besides, on June 27, 2006, the Presidential Advisory Council on Education, Science and Technology (PACEST) announced “Strategy for Intellectual Property System Constructing Plan.” However, these policies or acts mainly focus on the protection and application of patent rights, not relate to other kinds of intellectual property rights such as trademark right, copyright etc. Until 2008, in order to advance the ability of national competition, Lee Myung-bak government had established “Presidential Council on National Competitiveness (PCNC)”. For the vision of transforming to the intellectual property based economy, the PCNC held its 15th meeting on July 29, 2009. The meeting, held at the Blue House, was attended by the president, the Chairman, and members of the Council. One of the agenda of the meeting is strategies for an intellectual property (IP) powerhouse to realize a creative economy. Three goals of the strategies includes being IP Top 5 nations (U.S., Japan, EU, Korea and China), improving technology balance of payments deficits, and enhancing the scale of copyright industry. Next, this study will introduce details of Korea IP related strategies for our nation’s reference. Introduction Korea IP strategy consists of 3 aspects (creation and application, law and regulation, infrastructure) and 11 missions. And the contents of 11 missions cover the creation, protection and application of intellectual property rights (patent, copyright, trademark, plant variety etc), namely the whole life cycle of intellectual property rights. Through announcement of IP Strategies, Korea hopes to protect intellectual property rights from every aspect and makes IP as essential driving force for national economic growth. 1. Creation and Application Aspect First, although the quantity of intellectual property rights (IPRs) of Korea is rapidly increased in recent years, the quality of intellectual property rights is not increased equally. Also, most of researchers do not receive appropriate rewards from R&D institutions, and then it might reduce further innovation. As above reasons, Korea IP strategy indicated that the government will raise “invention capital” to exploit, buy researchers’ new ideas, and make those ideas get legal protection. That is, the government will set up non-practicing entities (NPEs) with private business. The NPEs would buy intellectual properties from R&D institutions or researchers, and then license to enterprises who have need. After licensing, NPEs will share royalty which obtained from enterprises (licensees) with researchers appropriately. Besides, in order to encourage university, public R&D institutions to set up “technology holdings”, Korea government had amended “Industry Education and Corporation of Industry, Academic and Research Promotion Act”. The amendments are loosening establishment conditions of technology holdings, such as minimum portion of investment in technology has been lowered from 50% to 30%, and broadening the scope of business of technology holdings. 2. Law and Regulation Aspect Secondly, in aspect of law and regulation, in addition to encouraging creation of good quality of IP, Korea considers that intellectual property rights are needed to be protected legally. Therefore, the IP strategy especially pointed out that Korea would follow the example of Japan to legislate their own “Intellectual Property Basic Act”. According to Korea “Intellectual Property Basic Act”, it should establish a “Presidential Council on Intellectual Property”. The main work of this Council is planning and promoting intellectual property related policies. There are 5 chapters and 41 articles in Korea “Intellectual Property Basic Act”. The Act like Korea IP strategy is divided into three parts, that is, “creation and application”, “protection” and “infrastructure”. In fact, the legislation of Korea “Intellectual Property Basic Act” embodies the policies of IP strategy. Further, according to Korea “Intellectual Property Basic Act”, “Presidential Council on Intellectual Property” is to integrate IP related affairs of the administrations into one action plan and promote it. Moreover, according to Korea “Intellectual Property Basic Act”, the government should make medium-term and long-term policies and basic plans for the promotion of intellectual properties every 5 years and adjusts policies and plans periodically as well. Through framing, enacting and adjusting policies and plans, Korea expects to create a well-living environment for the development of intellectual property. 3. Infrastructure Aspect Thirdly, even if good laws and regulations are already made and more government budget and human resource are invested, Korea is still deficient in well-prepared social infrastructure and leads to the situation that any promoting means of intellectual properties will be in vain. With regard to one of visions of Korea IP strategy,” being IP Top 5 power (U.S., Japan, EU, Korea and China)”, on the one hand, Korea domestic patent system should harmonize with international intellectual property regulations that includes loosening the conditions of application and renewal of patent and trademark. On the other hand, the procedure of patent application conforms to the international standard, that is, the written form of USA patent application becomes similar to the forms of world IP Top 3 power (U.S., Japan and EU) and member states of Paten Law Treaty (PLT). At the same time, Korea would join “Patent Prosecution Highway (PPH)” to enable Korea enterprises to acquire protection of patent rights around the world more rapidly. In addition, about the investigation of infringement of intellectual property rights, Korea IP strategy stated that it would strengthen control measures on nation border and broaden IP protection scope from only patent to trademark, copyright and geographical indications. Besides, Korea uses network technology to develop a 24-hour online monitoring system to track fakes and illegal copies. In addition to domestic IP protection, Korea enterprises may face IP infringement at overseas market, thus Korea government has provided supports for intellectual property rights disputes. For this sake, Korea choose overseas market such as Southeast Asia, China, and North America etc to establish “IP Desk” and “Copyright Center” for providing IP legal consultation, support of dispute-resolving expenses and information services for Korea enterprises. Korea IP strategy partially emphasizes on the copyright trading system As mentioned above, one of visions of Korea IP strategy is “enhancing the development of copyright industry”. It’s well-known that Korea culture industries like music, movie, TV, online game industries are vigorous in recent years. Those culture industries are closely connected to copyright, so development of copyright industry is set as priority policy of Korea. In order to enhance the development of Korea copyright industry, a well-trading environment or platform is necessary so as to make more copyrighted works to be exploited. Therefore, Korea Copyright Commission has developed “Integrated Copyright Number (ICN)” that is identification number for digital copyrighted work. Author or copyright owners register copyright related information on “Copyright Integrated Management System (CIMS)” which manages information of copyrighted works provided by the authors or copyright owners, and CIMS would give an ICN number for the copyrighted work, so that users could through the ICN get license easily on “Copyright License Management System (CLMS)” which makes transactions between licensors and licensees. By distributing ICN to copyrighted works, not only the licensee knows whom the copyright belongs to, but the CLMS would preserve license contracts to ensure legality of the licensee’s copyright. After copyright licensing, because of characteristic of digital and Internet, it makes illegal reproductions of copyrighted works easily and copyright owners are subject to significant damages. For this reason, Korea Ministry of Culture, Sports and Tourism (MCST) and Korea Intellectual property Office (KIPO) have respectively developed online intellectual property (copyright and trademark) monitoring system. The main purpose of these two systems is assisting copyright and trademark owners to protect their interests by collecting and analyzing infringement data, and then handing over these data to the judiciary. Conclusion Korea IP strategy has covered all types of intellectual properties clearly. The strategy does not emphasize only on patent, it also includes copyright, trademark etc. If Taiwan wants to transform the economic type to IP-based economy, like Korea, offering protection to other intellectual property rights should not be ignored, too. As Taiwan intends to promote cultural and creative industry and shows soft power of Taiwan around the world, the IP strategy of Taiwan should be planned more comprehensively in the future. In addition to protecting copyrights by laws and regulations, for cultural and creative industry, trading of copyrights is equally important. The remarkable part of Korea IP strategy is the construction of copyright online trading platform. Accordingly, Taiwan should establish our own copyright online trading platform combining copyright registration and source identification system, and seriously consider the feasibility of giving registered copyright legal effects. A well-trading platform integrating registration and source identification system might decrease risks during the process of licensing the copyright. At the same time, many infringements of copyrights are caused because of the nature of the modern network technology. In order to track illegal copies on the internet, Taiwan also should develop online monitoring system to help copyright owners to collect and preserve infringement evidences. In sum, a copyright trading system (including ICN and online intellectual property monitoring system) could reinforce soft power of Taiwan cultural and creative industry well.

TOP