The Taiwan Government has planned to boost the support and develop local industries across the following six major sectors: biotechnology, tourism, health care, green energy, innovative culture and post-modern agriculture. As the biotechnology industry has reached its maturity by the promulgation of "Biotech and New Pharmaceutical Development Act" in July, 2007, it will be the first to take the lead among the above sectors. Thus, the Executive Yuan has launched the Biotechnology Action Plan as the first project in building the leading industry sectors, to upgrade local industries and stimulate future economic growth.
To expand every industrial scale, enhance industrial value, increase the value around the main industrial field, and to encourage the industrial development by government investments for creating the civil working opportunities to reach the goal of continuous economic development, the Executive Yuan Economic Establishment commission has expressed that, the government has selected six newly industrials including "Biotechnology", "Green Energy", "Refined Agriculture", "Tourism", "Medicare", and "Culture Originality" on November 19, 2009 to promote our national economic growth. The government will invest two hundred billion NT dollars to support the industrial development aggressively and to enhance the social investments from year 2009 to 2012. According to a Chung-Hua Institution for Economic Research report, the future growth rate will reach 8.16% after the evaluation, Hence, the future of the industries seems to be quite bright.
Currently, the government plans to put money into six newly industries through the existing ways for investment. For instance, firstly, in accordance with the "Act For The Development Of Biotech And New Pharmaceuticals Industry" article 5 provision 1 ",for the purpose of promoting the Biotech and New Pharmaceuticals Industry, a Biotech and New Pharmaceuticals Company may, for a period of five years from the time it is subject to corporate income tax, enjoy a reduction in its corporate income tax payable for up to thirty-five percent (35%) of the total funds invested in research and development ("R&D") and personnel training each year; provided, however, that if the R&D expenditure of a particular year exceeds the average R&D expenditure of the previous two years or if the personnel training expenditure of a particular year exceeds the average personnel training expenditure of the previous two years, fifty percent (50%) of the amount in excess of the average may be used to credit against the amount of corporate income tax payable. Secondly, according to same act of the article 6 provision 1 ", in order to encourage the establishment or expansion of Bio tech and New Pharmaceuticals Companies, a profit-seeking enterprise that (i) subscribes for the stock issued by a Biotech and New Pharmaceuticals Company at the time of the latter's establishment or subsequent expansion; and (ii) has been a registered shareholder of the Biotech and New Pharmaceuticals Company for a period of three (3) years or more, may, for a period of five years from the time it is subject to corporate income tax, enjoy a reduction in its corporate income tax payable for up to twenty percent (20%) of the total amount of price paid for the subscription of shares in such Biotech and New Pharmaceuticals Company; provided that such Biotech and New Pharmaceuticals Company has not applied for exemption from corporate income tax or shareholders investment credit based on the subscription price under other applicable laws and regulations. Thirdly, to promote the entire biotechnological industry development, the government has drafted the "Biotechnology Takeoff Package" for subsidizing the startup´s social investment companies which can satisfy the conditions to invest in "Drug discovery", "Medical Device" or other related biotech industries up to 5 billion with the capital invest in domestic industry over 50%, , with operating experience of multinational biotech investment companies with capital over 150 million in related industrial fields, and with the working experiences of doctor accumulated up to 60 years.
Additionally, the refined agriculture industry field has not only discovered the gene selected products, but also combined the tourism with farming business for new business model creation. According to the "Guidelines for Preferential Loans for the Upgrading of Tourism Enterprises" point 4 provision 1, the expenditure for spending on machine, instruments, land or repairing can be granted a preferential loan in accordance with the rule of point 6, and government will provide a subsidy of interest for loaning Tourism Enterprises with timely payments.
At last, Council for Economic Planning and Development also points out because most of technology industry has been impacted seriously by fluctuation of international prosperity due to conducting the export trade oriented strategy. Furthermore, the aspects of our export trade of technology industry have been impacted by the U.S. financial crisis and the economic decay in EU and US; and the industrial development seems to face the problem caused by over centralization in Taiwan. Hence, the current framework of domestic industry should be rearranged and to make it better by promoting the developmental project of six newly industries.
In July 2007, the "Biotech and New Pharmaceutical Development Act" modified many regulations related to pharmaceutical administration, taxes, and professionals in Taiwan. In addition, in order to facilitate the development of the biotechnology and pharmaceutical industries, the government has attempted to create a friendly environment for research and development by setting up appropriate regulations and application systems. These measures show that the Taiwanese government is keenly aware that these industries have huge potential value. To operate in coordination with the above Act and to better deal with the increasing productivity of pharmaceutical R&D programs in Taiwan, the Executive Yuan simplified the New Drug Application (NDA) process to facilitate the submission that required Certificate of Pharmaceutical Product (CPP) for drugs with new ingredients.
The current NDA process requires sponsors to submit documentation as specified by one of the following four options: (1) three CPPs from three of "ten medically-advanced countries," including Germany, the U.S., England, France, Japan, Switzerland, Canada, Australia, Belgium, and Sweden; (2) one CPP from the U.S., Japan, Canada, Australia, or England and one CPP from Germany, France, Switzerland, Sweden, or Belgium; (3) a Free Sale Certificate (FSC) from one of ten medically-advanced countries where the pharmaceuticals are originally produced and one CPP from one of the other nine countries; or (4) a CPP from the European Medicines Agency. Thus, the current NDA process requires sponsors to spend inordinate amounts of time and incur significant costs to acquire two or three FSCs or CPPs from ten medically-advanced countries in order to submit an NDA in Taiwan.
According to the new rules, sponsors will not have to submit above CPPs if (1) Phase I clinical studies have been conducted in Taiwan, and Phase III Pivotal Trial clinical studies have been simultaneously conducted both in Taiwan and in another country or (2) Phase II and Phase III Pivotal Trial clinical studies have been simultaneously conducted both in Taiwan and in another country. Besides, the required minimum numbers of patients were evaluated during each above phase. Therefore, sponsors who conduct clinical studies in Taiwan and in another country simultaneously could reduce their costs and shorten the NDA process in Taiwan.
The new rules aim to encourage international pharmaceutical companies to conduct clinical studies in Taiwan or to conduct such studies cooperatively with Taiwanese pharmaceutical companies. Such interactions will allow Taiwanese pharmaceutical companies to participate in development and implementation of international clinical studies in addition to benefiting from the shortened NDA process. Therefore, the R&D abilities and the internationalization of the Taiwanese pharmaceutical industry will be improved.
I.Introduction Having sustained the negative repercussions following the global financial crisis of 2008, Taiwan’s average economic growth rate decreased from 4.4 percent (during 2000-2007 years) to 3 percent (2008-2012). This phenomenon highlighted the intrinsic problems the Taiwanese economic growth paradigm was facing, seen from the perspective of its development momentum and industrial framework: sluggish growth of the manufacturing industries and the weakening productivity of the service sector. Moreover, the bleak investment climate of the post-2008 era discouraged domestic investors injecting capital into the local economy, rendering a prolonged negative investment growth rate. To further exacerbation, the European Debt Crisis of 2011 – 2012 has impacted to such detriment of private investors and enterprises, that confidence and willingness to invest in the private sector were utterly disfavored. It can be observed that as Taiwan’s industrial core strength is largely concentrated within the the manufacturing sector, the service sector, on the other hand, dwindles. Similarly, the country’s manufacturing efforts have been largely centered upon the Information & Communications Technology (ICT) industry, where the norm of production has been the fulfillment of international orders in components manufacturing and Original Equipment Manufacturing (OEM). Additionally, the raising-up of society’s ecological awareness has further halted the development of the upstream petrochemical and metal industry. Consumer goods manufacturing growth impetus too has been stagnated. Against the backdrop of the aforementioned factors at play as well as the competitive pressure exerted on Taiwan by force of the rapid global and regional economic integration developments, plans to upgrade and transform the existing industrial framework, consequently, arises out as an necessary course of action by the state. Accordingly, Taiwan’s Executive Yuan approved and launched the “Industrial Upgrading and Transformation Action Plan”, on the 13th of October 2014, aiming to reform traditional industries, reinforcing core manufacturing capacities and fostering innovative enterprises, through the implementation of four principal strategies: Upgrading of Product Grade and Value, Establishment of Complete Supply Chain, Setting-up of System Integration Solutions Capability, Acceleration of Growth in the Innovative Sector. II.Current challenges confronting Taiwanese industries 1.Effective apportionment of industrial development funds Despite that Research and Development (R&D) funds takes up 3.02% of Taiwan’s national GDP, there has been a decrease of the country’s investment in industrial and technology research. Currently Taiwan’s research efforts have been directed mostly into manufacturing process improvement, as well as into the high-tech sector, however, traditional and service industries on the other hand are lacking in investments. If research funds for the last decade could be more efficiently distributed, enterprises would be equally encouraged to likewise invest in innovation research. However, it should be noted that Taiwan’s Small and Medium Enterprises (SME) based on their traditional developmental models, do not place research as their top priority. Unlike practices in countries such as Germany and Korea, the research fund input by private enterprises into academic and research institutions is still a relatively unfamiliar exercise in Taiwan. With regards to investment focus, the over-concentration in ICTs should be redirected to accommodate growth possibilities for other industries as well. It has been observed that research investments in the pharmaceutical and electric equipment manufacturing sector has increased, yet in order to not fall into the race-to-the-bottom trap for lowest of costs, enterprises should be continually encouraged to develop high-quality and innovative products and services that would stand out. 2.Human talent and labor force issues Taiwan’s labor force, age 15 to 64, will have reached its peak in 2015, after which will slowly decline. It has been estimated that in 2011 the working population would amount to a meager 55.8%. If by mathematical deduction, based on an annual growth rate of 3%, 4% and 5%, in the year 2020 the labor scarcity would increase from 379,000, 580,000 to 780,000 accordingly. Therefore, it is crucial that productivity must increase, otherwise labor shortage of the future will inevitably stagnate economic growth. Notwithstanding that Taiwan’s demographical changes have lead to a decrease in labor force; the unfavorable working conditions so far has induced skilled professionals to seek employment abroad. The aging society along with decrease in birth rates has further exacerbated the existing cul-de-sac in securing a robust workforce. In 1995 the employment rate under the age of 34 was 46.35%, yet in 2010 it dropped to a daunting 37.6%. 3.Proportional land-use and environmental concerns Taiwan’s Environmental Impact Assessment (EIA) is a time-consuming and often unpredictable process that has substantially deterred investor’s confidence. Additionally, there exists a disproportionate use of land resources in Taiwan, given that demand for its use predominantly stems from the northern and middle region of the country. Should the government choose to balance out the utilization of land resources across Taiwan through labor and tax policies, the situation may be corrected accordingly. III.Industrial Upgrading and Transformation Strategies The current action plan commences its implementation from October 2014 to end of December 2024. The expected industrial development outcomes are as follows: (1) Total output value of the manufacturing sector starting from 2013 at NTD 13.93 trillion is expected to grow in 2020 to NTD 19.46 trillion. (2) Total GDP of the service sector, starting at 3.03 trillion from 2011 is expected to grow in 2020 to 4.75 trillion NTD. 1.Strategy No.1 : Upgrading of product grade and value Given that Taiwan’s manufacturing industry’s rate for added value has been declining year after year, the industry should strive to evolve itself to be more qualitative and value-added oriented, starting from the development of high-end products, including accordingly high-value research efforts in harnessing essential technologies, in the metallic materials, screws and nuts manufacturing sector, aviation, petrochemical, textile and food industries etc. (1) Furtherance of quality research Through the employment of Technology Development Program (TDP) Organizations, Industrial TDP and Academic TDP, theme-based and pro-active Research and Development programs, along with other related secondary assistance measures, the industrial research capability will be expanded. The key is in targeting research in high-end products so that critical technology can be reaped as a result. (2) Facilitating the formation of research alliances with upper-, mid- and downstream enterprises Through the formation of research and development alliances, the localization of material and equipment supply is secured; hence resulting in national autonomy in production capacity. Furthermore, supply chain between industrial component makers and end-product manufacturers are to be conjoined and maintained. National enterprises too are to be pushed forth towards industrial research development, materializing the technical evolution of mid- and downstream industries. (3) Integrative development assistance in Testing and Certification The government will support integrative development in testing and certification, in an effort to boost national competitive advantage thorough benefitting from industrial clusters as well as strengthening value-added logistics services, including collaboration in related value-added services. (4) Establishment of international logistics centre Projection of high-value product and industrial cluster image, through the establishment of an international logistics centre. 2.Strategy No.2 : Establishment of a Complete Supply Chain The establishing a robust and comprehensive supply chain is has at its aim transforming national production capabilities to be sovereign and self-sustaining, without having to resort to intervention of foreign corporations. This is attained through the securing of key materials, components and equipments manufacturing capabilities. This strategy finds its application in the field of machine tool controllers, flat panel display materials, semiconductor devices (3D1C), high-end applications processor AP, solar cell materials, special alloys for the aviation industry, panel equipment, electric vehicle motors, power batteries, bicycle electronic speed controller (ESC), electrical silicon steel, robotics, etc. The main measures listed are as follows: (1) Review of industry gaps After comprehensive review of existing technology gaps depicted by industry, research and academic institutions, government, strategies are to be devised, so that foreign technology can be introduced, such as by way of cooperative ventures, in order to promote domestic autonomous development models. (2) Coordination of Research and Development unions – building-up of autonomous supply chain. Integrating mid- and downstream research and development unions in order to set up a uniform standard in equipment, components and materials in its functional specifications. (3) Application-theme-based research programs Through the release of public notice, industries are invited to submit research proposals focusing on specific areas, so that businesses are aided in developing their own research capabilities in core technologies and products. (4) Promotion of cross-industry cooperation to expand fields of mutual application Continuously expanding field of technical application and facilitating cross-industry cooperation; Taking advantage of international platform to induce cross-border technical collaboration. 3.Strategy No.3 : Setting-up of System Integration Solutions capability Expanding turnkey-factory and turnkey-project system integration capabilities, in order to increase and stimulate export growth; Combination of smart automation systems to strengthen hardware and software integration, hence, boosting system integration solution capacity, allowing stand-alone machinery to evolve into a total solution plant, thus creating additional fields of application and services, effectively expanding the value-chain. These type of transitions are to be seen in the following areas: turnkey-factory and turnkey-project exports, intelligent automated manufacturing, cloud industry, lifestyle (key example: U-Bike in Taipei City) industry, solar factory, wood-working machinery, machine tools, food/paper mills, rubber and plastic machines sector. Specific implementation measure s includes: (1) Listing of national export capability – using domestic market as test bed for future global business opportunities Overall listing of all national system integration capabilities and gaps and further assistance in building domestic “test beds” for system integration projects, so that in the future system-integration solutions can be exported abroad, especially to the emerging economies (including ASEAN, Mainland China) where business opportunities should be fully explored. The current action plan should simultaneously assist these national enterprises in their marketing efforts. (2) Formation of System Integration business alliances and Strengthening of export capability through creation of flagship team Formation of system integration business alliances, through the use of national equipment and technology, with an aim to comply with global market’s needs. Promotion of export of turnkey-factory and turnkey-projects, in order to make an entrance to the global high-value system integration market. Bolstering of international exchanges, allowing European and Asian banking experts assist Taiwanese enterprises in enhancing bids efforts. (3) Establishing of financial assistance schemes to help national enterprises in their overseas bidding efforts Cooperation with financial institutes creating financial support schemes in syndicated loans for overseas bidding, in order to assist national businesses in exporting their turnkey-factories and turnkey-solutions abroad. 4. Strategy No.4 : Acceleration of growth in the innovative sectors Given Taiwan economy’s over-dependence on the growth of the electronics industry, a new mainstream industry replacement should be developed. Moreover, the blur distinction between the manufacturing, service and other industries, presses Taiwan to develop cross-fields of application markets, so that the market opportunities of the future can be fully explored. Examples of these markets include: Smart Campus, Intelligent Transportation System, Smart Health, Smart City, B4G/5G Communications, Strategic Service Industries, Next-Generation Semiconductors, Next-Generation Visual Display, 3D Printing, New Drugs and Medical Instruments, Smart Entertainment, Lifestyle industry (for instance the combination of plan factory and leisure tourism), offshore wind power plant, digital content (including digital learning), deep sea water. Concrete measures include: (1) Promotion of cooperation between enterprises and research institutions to increase efficiency in the functioning of the national innovation process Fostering of Industry-academic cooperation, combining pioneering academic research results with efficient production capability; Cultivation of key technology, accumulation of core intellectual property, strengthening integration of industrial technology and its market application, as well as, establishment of circulation integration platform and operational model for intellectual property. (2) Creating the ideal Ecosystem for innovation industries Strategic planning of demo site, constructing an ideal habitat for the flourishing of innovation industries, as well as the inland solution capability. Promotion of international-level testing environment, helping domestic industries to be integrated with overseas markets and urging the development of new business models through open competition. Encouraging international cooperation efforts, connecting domestic technological innovation capacities with industries abroad. (3) Integration of Cross-Branch Advisory Resources and Deregulation to further support Industrial Development Cross-administrations consultations further deregulation to support an ideal industrial development environment and overcoming traditional cross-branch developmental limitations in an effort to develop innovation industries. IV. Conclusion Taiwan is currently at a pivotal stage in upgrading its industry, the role of the government will be clearly evidenced by its efforts in promoting cross-branch/cross-fields cooperation, establishing a industrial-academic cooperation platform. Simultaneously, the implementation of land, human resources, fiscal, financial and environmental policies will be adopted to further improve the investment ambient, so that Taiwan’s businesses, research institutions and the government could all come together, endeavoring to help Taiwan breakthrough its currently economic impasse through a thorough industrial upgrading. Moreover, it can be argued that the real essence of the present action plan lies in the urge to transform Taiwan’s traditional industries into incubation centers for innovative products and services. With the rapid evolution of ICTs, accelerating development and popular use of Big Data and the Internet of Things, traditional industries can no longer afford to overlook its relation with these technologies and the emerging industries that are backed by them. It is only through the close and intimate interconnection between these two industries that Taiwan’s economy would eventually get the opportunity to discard its outdated growth model based on “quantity” and “cost”. It is believed that the aforementioned interaction is an imperative that would allow Taiwanese industries to redefine its own value amidst fierce global market competition. The principal efforts by the Taiwanese government are in nurturing such a dialogue to occur with the necessary platform, as well as financial and human resources. An illustration of the aforementioned vision can be seen from the “Industrie 4.0” project lead by Germany – the development of intelligent manufacturing, through close government, business and academic cooperation, combining the internet of things development, creating promising business opportunities of the Smart Manufacturing and Services market. This is the direction that Taiwan should be leading itself too. References 1.Executive Yuan, Republic of China http://www.ey.gov.tw/en/(last visited: 2015.02.06) 2.Industrial Development Bureau, Ministry of Economic Affairs http://www.moeaidb.gov.tw/(last visited: 2015.02.06) 3.Industrial Upgrading and Transformation Action Plan http://www.moeaidb.gov.tw/external/ctlr?PRO=filepath.DownloadFile&f=policy&t=f&id=4024(last visited: 2015.02.06)
Taiwan Announced the Biobanks Regulations and Management PracticesTaiwan Has Passed “Statute of Human Biobank Management” to Maintain Privacy and Improve Medicine Industries Due to lack of regulations, divergent opinions abounded about the establishment of Biobanks and collection of human biological specimen. For example, a researcher in an academic research organization and a hospital-based physician collected biospecimens from native Taiwanese. Although they insisted that the collections were for research only, human rights groups, ethics researchers, and groups for natives´ benefits condemned the collections as an invasion of human rights. Consequently, the Taiwanese government recognized the need for Biobanks regulation. To investigate the relationship between disease and multiple factors and to proceed with possible prevention, The Legislative Yuan Social Welfare and Healthy Environment Committee has passed "the draft statute of human biobank management" through primary reviewing process on December 30, 2009 and subsequently passed through entire three-reading procedure on January 7, 2010. Therefore, the medical and research institute not only can set up optimal gene database for particular disease curing, but also can collect blood sample for database establishment, legally. However, the use of sample collections will be excluded from the use of judiciary purpose. In the light of to establish large scale biobank is going to face the fundamental human right issue, from the viewpoint of biobank management, it is essential not only to set up the strict ethics regulation for operational standard, but also to make the legal environment more complete. For instance, the Department of Health, Executive Yuan had committed the earlier planning of Taiwan biobank establishment to the Academic Sinica in 2006, and planned to collect bio-specimen by recruiting volunteers. However, it has been criticized by all circles that it might be considered violating the Constitution article 8 provision 1 front paragraph, and article 22 rules; moreover, it might also infringe the personal liberty or body information privacy. Therefore, the Executive Yuan has passed the draft statute of human biobank management which was drafted and reviewed by Department of Health during the 3152nd meeting, on July 16, 2009, to achieve the goal of protecting our nation’s privacy and promoting the development of medical science by management biomedical research affairs in more effective ways. Currently, the draft statute has been passed through the primary review procedure by the Legislative Yuan. About the draft statute, there are several important points as following: (1) Sample Definition: Types of collected sample include human somatic cell, tissues, body fluids, or other derivatives; (2) Biobank Establishment: It requires not only to be qualified and permitted, but also to set up the ethical reviewing mechanism to strengthen its management and application; (3)Sample Collection and Participant Protection: In accordance with the draft statute, bio-specimen collecting should respect the living ethics during the time and refer to the "Medical Law" article 64 provision 1; before sample collection, all related points of attention should be kept in written form , the participant should be notified accordingly, and samples can only be collected with the participant’s consent. Furthermore, regarding the restrained read right and setting up participants’ sample process way if there were death or lost of their capacity; (4) Biobank Management: The safety regulation, obligation of active notification, free to retreat, data destruction, confidentiality and obligation, and termination of operation handling are stipulated; and (5) Biobank Application: According to the new draft statute, that the biological data can’t be used for other purposes, for example, the use of inquisition result for the "Civil law", article 1063, provision 2, prosecution for denying the parent-child relationship law suit", or according to the "Criminal law", article 213, provision 6. This rule not only protects the participants’ body information and their privacy right, but also clearly defines application limits, as well as to set up the mechanism for inner control and avoid conflict of interests to prevent unnecessary disputes. Finally, the Department of Health noted that, as many medical researches has shown that the occurrence of diseases are mostly co-effected by various factors such as multiple genes and their living environment, rather than one single gene, developed countries have actively devoted to human biological sample collection for their national biobank establishment. The construction and usage of a large-scale human bank may bring up the critical issue such as privacy protection and ethical problems; however, to meet the equilibrium biomedical research promotion and citizen privacy issue will highly depend on the cooperation and trust between the public and private sectors. Taiwan Department of Health Announced the Human Biobanks Information Security Regulation The field of human biobanks will be governed by the Act of Human Biobanks (“Biobanks Act”) after its promulgation on February 3, 2010 in Taiwan. According to Article 13 of the Biobanks Act, a biobank owner should establish its directive rules based on the regulation of information security of biobanks announced by the competent authority. Thus the Department of Health announced the draft of the Human Biobanks Information Security Regulation (“Regulation”) for the due process requirement. According to the Biobanks Act, only the government institutes, medical institutes, academic institutes, and research institutes are competent to establish biobanks (Article 4). In terms of the collecting of organisms, the participants should be informed of the relevant matters by reasonable patterns, and the collecting of organisms may be conducted after obtaining the written consent of the participants (Article 6). The relative information including the organisms and its derivatives are not allowed to be used except for biological and medical research. After all the protection of biobanks relative information above, the most important thing is the safety regulations and directive rules of the database administration lest all the restrictions of biobanks owners and the use be in vain. The draft Regulation aims to strengthen the safety of biobanks database and assure the data, the systems, the equipments, and the web circumstances are safe for the sake of the participants’ rights. The significant aspects of the draft are described as below. At first, the regulation should refer to the ISO27001, ISO27002 and other official rules. Concerning the personnel management, the security assessment is required and the database management personnel and researchers may not serve concurrently. In case some tasks are outsourced, the contractor should be responsible for the information security; the nondisclosure agreement and auditing mechanism are required. The application system should update periodically including the anti-virus and firewall programs. The biobanks database should be separated physically form internet connection, including the prohibition of information transforming by email or any other patterns through internet. The authorizing protocol of access to the biobanks should be established and all log files should be preserved in a period. The system establishment and maintenance should avoid remote control. In case the database system is physically out of the owner’s control, the authorization of the officer in charge is required. If an information security accident occurred, the bionbanks owner should contact the competent authority immediately and inform the participants by adequate tunnel. The biobanks owner should establish annual security auditing program and the project auditing will be conducted subject to the necessity. To sum up, while the biobanks database security regulation is fully established, the biobanks owners will have the sufficient guidance in connection with the biobank information security to comply with in the future.
A Preferred Model for Taiwan’s agency level AI risk categorization and management: A Cross-Jurisdictional PerspectiveA Preferred Model for Taiwan’s agency level AI risk categorization and management: A Cross-Jurisdictional Perspective 2025/09/15 Taiwan’s draft Artificial Intelligence Basic Law includes a provision allowing each government agency to establish its own risk-based AI management rules tailored to sector-specific regulatory needs[1]. To strike an effective balance between innovation and oversight, selecting an appropriate reference model is essential. After comparing major jurisdictions, this research argues that the United States Office of Management and Budget (OMB) Memorandum M-25-21—Accelerating Federal Use of AI through Innovation, Governance, and Public Trust[2]—offers the most balanced and practical approach for Taiwan’s agencies to refer to at this initial stage of developing AI regulation and promoting AI adoption. This article will first present an overview of the U.S. M-25-21 framework and its key features. It will then explain why the U.S. model is more suitable for Taiwan than those of other jurisdictions. Finally, it will conclude with recommendations for the government. I. Overview of the U.S. M-25-21 Framework Issued in April 2025 under Executive Order 14179, M-25-21 directs federal agencies to accelerate the adoption of artificial intelligence while maintaining a set of minimum safeguards. The memorandum identifies three priorities—innovation, governance, and public trust—and structures AI oversight around these principles. It requires every executive branch agency to designate a Chief AI Officer (CAIO), a senior official empowered to promote AI innovation, maintain a current inventory of AI use cases, and ensure that processes such as determining “high-impact” uses are in place. Rather than imposing a centralized management system, M-25-21 allows each agency to make context-sensitive determinations and to accept or waive risk management requirements. This approach recognizes that agencies vary widely in mission and capacity and are best positioned to understand the potential risks and benefits of AI within their own domains. The memorandum defines high-impact AI as systems whose outputs serve as a principal basis for decisions or actions with legal, material, binding, or significant rights and safety consequences. It offers a non-exhaustive list of presumed high-impact categories, including safety-critical functions of critical infrastructure, traffic management, patient diagnosis, blocking protected speech, and law enforcement applications. If an agency official determines that a specific AI use within these categories does not meet the high-impact definition, they must submit written documentation to notify the CAIO. By tying the definition to the effect of an AI system’s output rather than to a fixed sectoral list, M-25-21 provides a flexible method for identifying high-risk AI applications while preserving room for innovation. II. Key Features of the U.S. M-25-21 Framework A. Minimum Risk Management Practices To ensure protection without creating excessive barriers, M-25-21 specifies a set of minimum risk management practices that each agency must apply when using high-impact AI. Agencies are required to conduct pre-deployment testing under realistic conditions to confirm that AI systems perform as intended and to prepare appropriate risk mitigation plans. Even when agencies lack access to source code or training data, they are expected to use alternative testing methods—such as querying the AI service and observing its outputs—to assess performance and potential risks. Before deploying a high-impact AI system, agencies must complete an AI impact assessment. This assessment must explain the system’s intended purpose and expected benefits, analyze the quality and appropriateness of the data used, and evaluate potential impacts on privacy, civil rights, and civil liberties. It should also include a cost analysis, planned reassessment schedules and procedures, and comments highlighting potential concerns or gaps from an independent reviewer who was not involved in the system’s development. Importantly, the assessment must carry the signature of an accountable official who formally accepts the risk of deploying the AI system. Once deployed, agencies are expected to monitor AI systems continuously for performance drift, security vulnerabilities, or unforeseen adverse effects, and to implement appropriate mitigations and maintain documentation. Human oversight is equally essential: operators must receive specific training to interpret AI outputs, intervene when necessary, and use fail-safes or override mechanisms to minimize the risk of significant harm in high-impact situations. To protect the public, M-25-21 insists that individuals affected by AI-enabled decisions have access to timely human review and opportunities to appeal adverse outcomes. Appeals should not impose unnecessary burdens on individuals or the administration. Furthermore, agencies are expected to seek feedback from end users and the public to inform AI-related decision-making. These combined practices—testing, assessment, independent review, monitoring, human oversight, remedies, and feedback—form a balanced foundation for responsible AI use. The memorandum also requires agencies to safely discontinue any high-impact use cases that fail to comply with the minimum practices. B. Waiver System: Purpose and Conditions A distinctive feature of M-25-21 is its formal system for waivers from the minimum risk management practices. The waiver mechanism exists to reconcile two priorities: ensuring safety and rights protections on the one hand, and enabling innovation and rapid response on the other. Waivers may be considered when following a particular requirement would actually increase risks to safety or rights overall, or when compliance would create an unacceptable impediment to critical agency operations. For example, during a natural disaster or public health emergency, strict adherence to every procedural requirement might delay the deployment of an AI application that could save lives. In such situations, the CAIO may authorize a waiver to permit rapid deployment while still tracking and reassessing the use. Waivers for pilot programs are equally important for encouraging experimentation and innovation. They allow agencies to conduct small-scale, time-limited AI projects without implementing all minimum risk management practices, provided certain conditions are met: the pilot must be certified by the CAIO, centrally tracked, offer opt-in and opt-out options for individual participation, and apply minimum risk management practices where practicable. The memorandum imposes safeguards on this flexibility. Every waiver must be documented with a written determination explaining the reasoning, centrally tracked, and reassessed annually or whenever significant changes to the AI application’s conditions or context occur. CAIOs retain the power to revoke waivers at any time, and agencies must report any granted or revoked waiver to OMB annually and within 30 days of significant modifications. This approach maintains accountability while preventing rigid rules from becoming obstacles to effective governance. C. Disclosure Requirements for High-Impact Use and Waivers M-25-21 strongly emphasizes transparency as a pillar of public trust. Each agency must maintain an inventory of all AI use cases, submit it to OMB, and post a public version on the agency’s website. This inventory should be updated annually and, ideally, throughout the year to reflect the agency’s current use of AI. Transparency ensures that the public, civil society, and oversight bodies can understand where AI is influencing important government decisions without exposing sensitive or classified details. Similarly, agencies must publicly release summaries of each waiver or determination, including the justification, or explicitly indicate when no determinations or waivers are active. By making these summaries visible, the system builds confidence that waivers are granted for legitimate reasons. At the same time, OMB retains the authority to request detailed records concerning exception determinations within presumed high-impact categories. This combination of public disclosure and federal oversight helps maintain trust while safeguarding privacy, national security, and proprietary information. III. Why M-25-21 Stands Out for Taiwan’s AI Governance among Global Approaches Taiwan’s draft AI Basic Law envisions a decentralized system in which each agency determines its own risk classification and management practices[3]. The U.S. framework aligns closely with this philosophy. By empowering agencies to identify high-risk AI use cases tailored to their specific contexts, M-25-21 helps ensure that AI governance remains grounded in operational realities. At the same time, adopting M-25-21’s baseline practices, waiver safeguards, and disclosure requirements would provide consistency and public accountability across agencies. The combination of minimum risk management practices and transparent waiver use would encourage innovation while reassuring the public that any exceptions are justified, continuously monitored, and effectively controlled. Furthermore, embracing an approach that reflects emerging international consensus—particularly the emphasis on transparency in both U.S. and EU regimes—would position Taiwan to harmonize with global AI governance trends and strengthen its credibility in international markets. In contrast, the European Union’s AI Act predefines high-risk categories and mandates strict conformity assessments, CE Marking, and post-market monitoring[4]—an approach that is comprehensive but resource-intensive and may not suit all agencies equally. Australia’s ongoing discussions had been trending toward a similarly comprehensive model, but there has recently been backlash against this approach. Korea’s AI Basic Act[5] references high-risk AI only in broad terms and leaves most operational details undefined. M-25-21 strikes a middle ground, offering minimum yet concrete safeguards while preserving the flexibility agencies need to tailor governance to their specific domains. IV. Recommendations and Conclusion Based on this analysis, this research recommends that each agency designate a senior AI leader similar to a CAIO, maintain a public inventory of high-impact AI use cases, and publish summaries of waivers or determinations while safeguarding sensitive information. Agencies should also be encouraged to share AI resources and lessons learned to reduce duplication and strengthen governance maturity across government. Over time, these risk management practices can be refined in response to operational experience and evolving international standards. By adopting these principles, Taiwan can empower its agencies to innovate responsibly, protect citizens’ rights, and build public trust—ensuring that AI deployment across government remains both effective and aligned with global best practices. [1]〈政院通過「人工智慧基本法」草案 建構AI發展與應用良善環境 打造臺灣成為AI人工智慧島〉,行政院,https://www.ey.gov.tw/Page/9277F759E41CCD91/5d673d1e-f418-47dc-ab35-a06600f77f07(最後瀏覽日期︰2025/09/15)。 [2] United States Office of Management and Budget (OMB), M-25-21 Accelerating Federal Use of AI through Innovation, Governance, and Public Trust, https://www.whitehouse.gov/wp-content/uploads/2025/02/M-25-21-Accelerating-Federal-Use-of-AI-through-Innovation-Governance-and-Public-Trust.pdf (last visited Sept 15, 2025). [3] 蘇文彬,〈行政院通過AI基本法草案,將不設立AI專責機關〉,iThome,https://www.ithome.com.tw/news/170874(最後瀏覽日期︰2025/09/15)。 [4] Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence and amending Regulations (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1139 and (EU) 2019/2144 and Directives 2014/90/EU, (EU) 2016/797 and (EU) 2020/1828 (Artificial Intelligence Act), https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32024R1689 (last visited Sept 15, 2025). [5] 인공지능발전과신뢰기반조성등에관한기본법안,https://www.law.go.kr/%EB%B2%95%EB%A0%B9/%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5%20%EB%B0 %9C%EC%A0%84%EA%B3%BC%20%EC%8B%A0%EB%A2%B0%20%EA%B8%B0%EB%B0%98%20%EC%A1%B0 %EC%84%B1%20%EB%93%B1%EC%97%90%20%EA%B4%80%ED%95%9C%20%EA%B8%B0%EB%B3%B8%EB%B2 %95/(20676,20250121) (last visited Sept 15, 2025).
The Research on ownership of cell therapy productsThe Research on ownership of cell therapy products 1. Issues concerning ownership of cell therapy products Regarding the issue of ownership interests, American Medical Association(AMA)has pointed out in 2016 that using human tissues to develop commercially available products raises question about who holds property rights in human biological materials[1]. In United States, there have been several disputes concern the issue of the whether the donor of the cell therapy can claim ownership of the product, including Moore v. Regents of University of California(1990)[2], Greenberg v. Miami Children's Hospital Research Institute(2003)[3], and Washington University v. Catalona(2007)[4]. The courts tend to hold that since cells and tissues were donated voluntarily, the donors had already lost their property rights of their cells and tissues at the time of the donation. In Moore case, even if the researchers used Moore’s cells to obtain commercial benefits in an involuntary situation, the court still held that the property rights of removed cells were not suitable to be claimed by their donor, so as to avoid the burden for researcher to clarify whether the use of cells violates the wishes of the donors and therefore decrease the legal risk for R&D activities. United Kingdom Medical Research Council(MRC)also noted in 2019 that the donated human material is usually described as ‘gifts’, and donors of samples are not usually regarded as having ownership or property rights in these[5]. Accordingly, both USA and UK tends to believe that it is not suitable for cell donors to claim ownership. 2. The ownership of cell therapy products in the lens of Taiwan’s Civil Code In Taiwan, Article 766 of Civil Code stipulated: “Unless otherwise provided by the Act, the component parts of a thing and the natural profits thereof, belong, even after their separation from the thing, to the owner of the thing.” Accordingly, many scholars believe that the ownership of separated body parts of the human body belong to the person whom the parts were separated from. Therefore, it should be considered that the ownership of the cells obtained from the donor still belongs to the donor. In addition, since it is stipulated in Article 406 of Civil Code that “A gift is a contract whereby the parties agree that one of the parties delivers his property gratuitously to another party and the latter agrees to accept it.”, if the act of donation can be considered as a gift relationship, then the ownership of the cells has been delivered from donor to other party who accept it accordingly. However, in the different versions of Regenerative Medicine Biologics Regulation (draft) proposed by Taiwan legislators, some of which replace the term “donor” with “provider”. Therefore, for cell providers, instead of cell donors, after providing cells, whether they can claim ownership of cell therapy product still needs further discussion. According to Article 69 of the Civil Code, it is stipulated that “Natural profits are products of the earth, animals, and other products which are produced from another thing without diminution of its substance.” In addition, Article 766 of the Civil Code stipulated that “Unless otherwise provided by the Act, the component parts of a thing and the natural profits thereof, belong, even after their separation from the thing, to the owner of the thing.” Thus, many scholars believe that when the product is organic, original substance and the natural profits thereof are all belong to the owner of the original substance. For example, when proteins are produced from isolated cells, the proteins can be deemed as natural profits and the ownership of proteins and isolated cells all belong to the owner of the cells[6]. Nevertheless, according to Article 814 of the Civil Code, it is stipulated that “When a person has contributed work to a personal property belonging to another, the ownership of the personal property upon which the work is done belongs to the owner of the material thereof. However, if the value of the contributing work obviously exceeds the value of the material, the ownership of the personal property upon which the work is done belongs to the contributing person.” Thus, scholar believes that since regenerative medical technology, which induces cell differentiation, involves quite complex biotechnology technology, and should be deemed as contributing work. Therefore, the ownership of cell products after contributing work should belongs to the contributing person[7]. Thus, if the provider provides the cells to the researcher, after complex biotechnology contributing work, the original ownership of the cells should be deemed to have been eliminated, and there is no basis for providers to claim ownership. However, since the development of cell therapy products involves a series of R&D activities, it still need to be clarified that who is entitled to the ownership of the final cell therapy products. According to Taiwan’s Civil Code, the ownership of product after contributing work should belongs to the contributing person. However, when there are numerous contributing persons, which person should the ownership belong to, might be determined on a case-by-case basis. 3. Conclusion The biggest difference between cell therapy products and all other small molecule drugs or biologics is that original cell materials are provided by donors or providers, and the whole development process involves numerous contributing persons. Hence, ownership disputes are prone to arise. In addition to the above-discussed disputes, United Kingdom Co-ordinating Committee on Cancer Research(UKCCCR)also noted that there is a long list of people and organizations who might lay claim to the ownership of specimens and their derivatives, including the donor and relatives, the surgeon and pathologist, the hospital authority where the sample was taken, the scientists engaged in the research, the institution where the research work was carried out, the funding organization supporting the research and any collaborating commercial company. Thus, the ultimate control of subsequent ownership and patent rights will need to be negotiated[8]. Since the same issues might also occur in Taiwan, while developing cell therapy products, carefully clarifying the ownership between stakeholders is necessary for avoiding possible dispute. [1]American Medical Association [AMA], Commercial Use of Human Biological Materials, Code of Medical Ethics Opinion 7.3.9, Nov. 14, 2016, https://www.ama-assn.org/delivering-care/ethics/commercial-use-human-biological-materials (last visited Jan. 3, 2021). [2]Moore v. Regents of University of California, 793 P.2d 479 (Cal. 1990) [3]Greenberg v. Miami Children's Hospital Research Institute, 264 F. Suppl. 2d, 1064 (SD Fl. 2003) [4]Washington University v. Catalona, 490 F 3d 667 (8th Cir. 2007) [5]Medical Research Council [MRC], Human Tissue and Biological Samples for Use in Research: Operational and Ethical Guidelines, 2019, https://mrc.ukri.org/publications/browse/human-tissue-and-biological-samples-for-use-in-research/ (last visited Jan. 3, 2021). [6]Wen-Hui Chiu, The legal entitlement of human body, tissue and derivatives in civil law, Angle Publishing, 2016, at 327. [7]id, at 341. [8]Okano, M., Takebayashi, S., Okumura, K., Li, E., Gaudray, P., Carle, G. F., & Bliek, J. UKCCCR guidelines for the use of cell lines in cancer research.Cytogenetic and Genome Research,86(3-4), 1999, https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC2363383&blobtype=pdf (last visited Jan. 3, 2021).